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1. INTRODUCTION

This report briefly reviews the work performed under Army Research Office

contract No. DAAG29-83-C-0027 on the development of parametric techniques for

multichannel signal processing. The results are summarized in a number of

papers, which are enclosed as appendices A-M.

1.1 MULTICHANNEL SIGNAL PROCESSING

Most of the work in the area of signal processing (in particular adaptive

signal processing) is concerned with the single channel case: the design and

analysis of filters with a single input and a single output (SISO). This type

of processing is naturally suited to situations involving a scalar time series
such as the video signal in a radar system or the output of a communication

receiver. Many problems of great practical interest involve vector time

series such as the signals in an acoustic or seismic array. To perform

optimal prediction/estimation of such signals will usually require multi-input

multi-output (MIMO) filters. Because of the higher complexity (both

conceptual and computational) of MIMO filters, they are often replaced by

suboptimal single channel processors.

In some recent work we developed a multichannel processor for the problem

I of estimating the parameters (location and spectrum) of multiple targets from
multi-sensor data [10]. Preliminary simulation results indicated that

significant performance improvements are achievable by performing optimal
multichannel processing instead of the more conventional single channel

6 processing. These initial positive results motivated us to study further the

design and analysis of MIMO filters and their applications.

The advent of powerful VLSI processors makes it feasible to consider the

more complex MIMO signal processing archietectures. The theoretical framework

necessary for the development of multichannel processing techniques is

currently available; researchers in system theory and modern control have been

treating MIMO problems for the past two decades. We feel, therefore, that the
L time is right for the development and application of optimal multichannel

signal processing techniques.

Fri* . 1



1.2 THE PARAMETRIC APPROACH

Autoregressive moving-average (ARMA) models are widely used in the

statistical analysis of time series. In signal processing, autoregressive

(AR) techniques have been used for high resolution spectral estimation, linear

predictive coding, and (implicitly) in various adaptive filtering applications

[I]-[3]. The use of ARMA models and the related infinite impulse response

(IIR) prediction filters has been much more limited due to the difficulty of

reliably estimating the parameters of such models from noisy data. Practical

applications of these techniques have been limited to the single channel case.

In some recent work we applied (scalar) ARMA modeling techniques borrowed

from the area of system identification to signal processing problems such as

adaptive line enhancement, adaptive noise cancelling, adaptive deconvolution,

and spectral estimation [4]-[71. We also developed a very robust non-adaptive

ARMA parameter estimation technique which was used for high resolution

spectral estimation [11]. Other ARMA spectral estimation techniques were
reported in [8]-[9]. Based on the accumulated experience with AR and ARMA

signal processing techniques it seems that the single channel case is

reasonably well developed by now. (It should be noted, however, that many

questions are still open in the area of ARMA modeling for adaptive IIR

filtering.)

The natural next step is to extend techniques for ARMA modeling to the

MIMO case and to use them for designing multichannel signal processors. The

main thrust of our research was, therefore, the development of robust

estimation techniques for MIMO ARMA parameters. Once these parameters are

estimated, they can be used to design MIMO filters for a variety of

applications, as was shown in [4]-[7] for the single channel case. The

problem of estimating MIMO ARMA parameters involves difficulties which were

not present in the SISO case. These difficulties are related to the complex

structure of MIMO systems and to questions of non-uniqueness of the

representation of vector time-series.
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2. PROJECT PUBLICATIONS

The following is a list of publications summarizing the work performed on

this project. The key publications are included as appendices to this report.

In this project we developed a number of accurate ARMA estimation

techniques which can be used for single and multichannel problems. These

techniques require a modest amount of computation compared to a full-blown

maximum likelihood technique. We have also developed asymptotic performance

bounds that make it possible to evaluate the accuracy of these techniques.

The results of this work are summarized in more than 30 project publications

(see Section 2) and the key results are included in this report in appendices

A-M. These results have a wide range of applications in the area of

surveillance, communications, and statistical signal processing.

2.1 PUBLISHED JOURNAL PAPERS

1. B. Friedlander and B. Porat, "Some Bounds for the Estimation of

Autoregressive Signals in White NNoise," Signal Processing, No. 8, pp.

291-302, 1985.

2. P. Stoica, T. Soderstrom and B. Friedlander, "Optimal Instrumental

Variable Estimates of the AR Parameters of an ARMA Process," IEEE Trans.

Automatic Control, Vol. AC-30, No. 11, pp. 1065-1075, November 1985.

2.2 ACCEPTED FOR PUBLICATION IN JOURNALS

3. P. Stoica, B. Friedlander and T. Soderstrom , "Least-Squares, Yule-Walker

and Overdetermined Yule-Walker Estimation of AR Parameters: A Monte Carlo

Study of Finite Sample Properties," Int. J. Control, to appear.

4. B. Porat and B. Friedlander, "Computation of the Exact Information Matrix

for Gaussian Time Series with Stationary Random Components," IEEE Trans.

Acoustics, Speech and Signal Processing, to appear.

5. B. Friedlander and B. Porat, "Multichannel Spectral Analysis Using the
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Modified Yule-Walker Equations," J. Signal Processing, Special Issue on

Spectral Estimation, to appear.

2.3 UNDER REVIEW

6. P. Stoica, B. Friedlander and T. Soderstrom , "Optimal Instrumental

Variable Multistep Algorithms for the Estimation of AR Parameters of an

ARMA Process."

7. P. Stoica, B. Friedlander and T. Soderstrom , "An Approximate Maximum

Likelihood Estimator of ARMA Parameters."

8. P. Stoica, B. Friedlander and T. Soderstrom , "Maximum Likelihood

Estimation of the Parameters of Multiple Sinusoids in Noise."

9. B. Porat and B. Friedlander, "Adaptive Detection of Deterministic

Transient Signals."

10. B. Porat and B. Friedlander, "Asymptotic Performance Analysis of ARMA

AParameter Estimation Methods Based on Sample Covariances," IEEE Trans.

Automatic Control.

11. B. Porat and B. Friedlander, "The Exact Cramer-Rao Bound for Gaussian

Autoregressive Processes," IEEE Trans. Information Theory.

12. P. Stoica, B. Friedlander and T. Soderstrom , "On Instrumental Variable

Estimation of Sinusoid Frequencies and the Parsimony Principle," IEEE

Trans. Acoustics, Speech and Signal Processing.

13. B. Friedlander, P. Stoica and T. Soderstrom , "Instrumental Variable

Methods for ARMA Models," Chapter in Vol. XXIV of "Advances in Control and

Dynamic Systems."

14. B. Porat and B. Friedlander, "Parameter Estimation of Continuous-Time

Stationary Gaussian Processes with Rational Spectra," IEEE Trans.

Acoustics, Speech and Signal Processing.
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2.4 CONFERENCE PAPERS

I 15. B. Friedlander and B. Porat, "Multichannel Spectral Analysis Using the

Modified Yule-Walker Equations," 18th ASILOMAR Conference on Circuits

Systems and Computers, Pacific Grove, California, November 1984.

16. B. Friedlander and B. Porat, "Bounds for ARMA Spectral Analysis Based on

Sample Covariances," Intl' Conf. Acoustics Speech and Signal Processing,

Tampa, Florida, March 1985.

17. B. Porat and B. Friedlander, "Adaptive Detection of Transient Signals,"

Intl' Conf. Acoustics Speech and Signal ProcessinQ, Tampa, Florida, March

1985.

18. B. Porat and B. Friedlander, "Parameter Estimation of Continuous-time

Stationary Gaussian Processes with Rational Spectra," Automatic Control

Conference, Boston, Massachussetts, June 1985.

19. B.Porat and B. Friedlander, "Asymptotic Accuracy of ARMA Parameter

Estimation Methods Based on Sample Covariances," 7th IFAC Symposium on

Identification and System Parameter Estimation, York, United Kingdom, July
1985.

20. B. Friedlander, P. Stoica and T. Soderstrom , "Instrumental Variable

Methods for ARMA Parameter Estimation," 7th IFAC Symposium on

Identification and Sysstem Parameter Estimation, July 1985, York, United

Kingdom.

21. B. Porat and B. Friedlander, "The Exact Cramer-Rao Bound for Gaussian

Autoregressive Processes," 1985 Asilomar Conference on Circuits, Systems

and Computers, Pacific Grove, California, November 6-8, 1985.

22. P. Stoica, B. Friedlander and T. Soderstrom , "Optimal Instrumental

Variable Multistep Algorithms for Estimation of AR Parameters of an ARMA

Process," The 1985 Conference on Decision and Control, Fort Lauderdale,
Florida, December 1985.
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23. P. Stoica, B. Friedlander and T. Soderstrom I "An Approximate Maximum

Likelihood Estimator of ARMA Parameters," The 1985 Conference on Decision

and Control, Fort Lauderdale, Florida, December 1985.

24. B. Porat and B. Friedlander, "Computation of the Exact Information Matrix

for Gaussian Time Series with Stationary Random Components," The 1985

Conference on Decision and Control, Fort Lauderdale, Florida, December

1985.

2.5 REPORTS

25. B. Friedlander, "Parametric Techniques for Multichannel Signal

Processing," Semi-Annual Progress Report 5498-01, April 1984.

26. P. Stoica, B. Friedlander and T. Soderstr6m , "Maximum Likelihood

Estimation of the Parameters of Multiple Sinusoids in Noise," Report 5498-

02.

27. P. Stoica, B. Friedlander and T. Sdderstr{5m "An Approximate Maximum

Likelihood Estimator of ARMA Parameters," Report 5498-03, December 1984.

28. P. Stoica, B. Friedlander and T. S6derstr6m , "Optimal Instrumental

Variable Multistep Algorithms for the Estimation of AR Parameters of an

ARMA Process," Report 5498-04, December 1984.

29. P. Stoica, T. Soderstrom and B. Friedlander, "Optimal Instrumental

Variable Estimates of the AR Parameters of an ARMA Process," Technical

Report 54985-05, September 1984.

30. B. Porat and B. Friedlander, "Adaptive Detection of Deterministic
4 Transient Signals," Technical Report 5498-05, September 1984.
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ON THE COMPUTATION OF AN ASYMPTOTIC BOUND FOR ESTIMATING
AUTOREGRESSIVE SIGNALS IN WHITE NOISE*

Benjamin FRIEDLANDER
-, Srstems Contirol Technology, Inc., 1801 Page ill Road. Palo Alto, CA 94304. UrSA

Boaz PORAT
Department ot Electrical Engineering. Technwon, Israel Institute of Technology, Haifa j2000 Israel, UISA

Received 4 October 1984
-4,

r Abstract. The Cramer-PRao lower bound iCRLB) provides a useful reference for evaluating the performance of parameter
estimation techniques. This paper considers the problem of estimating the parameters of an autoregressive signal corrupted
by white nw~e. A~n expiit formula is derived for computing the asymptotic CRLB for the signal and noise parameters.
Formulas for the asymptotic CRLB for functions of the signal and noise parameters are also presented. In particular, the
center requency, bandwidth and power of a second order process are considered. Some numerical examples are presented
to l;ustrate the usefulness of these bounds in studying estimation accuracy.

Zussitmewfaaumg. Die Cramer-Rao untere Grenze CRLBI gibt eine nuitzliche Referenz ftir die Pert'ormantz Evaluation von
Parameter Est imatonstechniken. Diese Kommunikation betrachtet das Problem der Estimation von Paramtemn eines
.iutoretressiven Signals in weissem Rauchen. Eine explizite Formel wird angegeben far den asymptotiscl'en CRLB von Signal
und Rausch Parametern. Formeln fu-r den CRLB von Funktionen der Signal und Rausch Parameter werden duch angegeben.
In spezieilen werden die M.ittenfrequenz. Bandbreite und Leistung cinies Prozesses zweiter Ordnung angegeben. Numerische

* , Beispiete werden gegeben um die Nultzlichkeit dieser Grenzen zu zeigen wenn Estimationsaenauigkert studiert wird.

Resumei. La borne de Cramer Rao est un moven utile pour ivaluer 1'efficacite dune methode d'estimation. On .ttudie dans
cet srticle ['estimation de modiles de type AR plus bruit. On donne des formules explicites permettant tie calculer de maniire
numencluement efficace ces homes de Cramer Rao. On examine de plus puis le cas de la fr~quence centrale et [a bande
passante d'une Nrquence noyi dans du bruit. Ces resultats iont illustres par des simulations.

Keywords. Autoregressive. Cramer Rao bound, asymptotic error analysis.

1. Introduction other words,

The problem of estimating the parameters of I
V.signals from their noisy measurements arises in where x. is the signal. w, is a zero-mean white noise

many engineering applications. A common model process with variance cr: , and v, is the observed
for a wide-sense stationary random signal is the data. The autoregressive signal obeys the stochastic
autoregressive (AR) model. The signal is assumed difference equation,
to be corrupted by white measurement noise. In ~i2

X? I.X t-r12

This work was iupported by the Army Research Office weeu sazr-enwieniepoeswt
under Contract No. DAAG29-83-C.0027. variance cr..

)l65.684,RS, 30 1' 981 E!sevier Science Fliblishers B. V. North-Holandi
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A considerable number of papers in the start by introducing the spectral density function
engineering and statistical literature treat the pro- S(:) of the AR-plus-noise process and computing
cessing and estimation of autoregressive signals, its derivatives with respect to the various para- -.

see e.g., [1-6]. A useful tool for evaluating the meters. Using Whittle's formula for the asymptotic
performance of such AR estimation techniques, is form of the Fisher information matrix [10] we
the Cramer-Rao lower bound (CRLB) on the express the entries of this matrix by complex
covariance matrix of the estimated parameters [7], integrals involving the spectrum S(:) and its
(8]. Comparison of the covariance matrix of a given derivatives. Finally we evaluate these complex
parameter estimation technique to the CRLB pro- integrals using certain facts from the theory of
vides a measure of the accuracy of that technique. discrete Lyapunov equations.

While the CRLB has been known for quite some
time, relatively little work seems to have been done 2.1. The spectrum and its derivatives
on its computational aspects. In [4], [9] a simple The spectrum of an AR-plus-Noise process
numerical integration procedure for computing the defined in 11 ) (2) is given by
CRLB is proposed, based on an asymptotic CRLB
formula due to Whittle [ 10]. In the case of narrow- o-; - -,-o'a(:a-)
band AR Processes considerable care must be -. a(:)a(' =

taken to avoid excessive numerical errors. In this (3)
paper (Section 2) we present an explicit formula

for the asymptotic C RLB for AR plus-noise proces- where

ses, which does not involve numerical integration. a, - I 4 a:-. • -- a,: . (4)
In many applications one is interested not in the

AR parameters, but in some function of these has all of its roots outside the unit circle. Let c)"
parameters such as the center frequency, band- and K be defined by ,
width and power of narrowband spectral lines. In
Section 3 we present formulas for computing the o' -o',a( :)a : -1) = Kc(:)c(:-'), (5)

CRLB of a general function of the AR-plus-noise where ct:) is the unique monic stable spectral
parameters and of some special commonly used factor of the left-hand side of (5). i.e..
functions.

In Section 4 we present a few examples illustrat- c(f:) = I -- c,:- - .- c,", (6)
ing how to use the CRLB to study the effect of

and c (:) has all of its roots outside the unit circle.
various signal and noise parameters on estimation

S(:) and its inverse are given by
accuracy.

Kc( :)c( :-')

2. An explicit formula for the Fisher information
matrix S (= ()) -'")" ' ~Kc( :)ci -

In this section we derive an explicit expression To compute the Fisher information matrix we need . .4
* for the Fisher information matrix for the param- expressions for the partial derivatives of S(z) with

eters(a ...... a., ', o;T2}. The inverse of the Fisher respect to the parameters {a..a, '., o- }.provides Straightforward calculations show that "-information matrix prvdsthe Cramer-Rao

lower bound on the estimation errors associated Sc
witha these parameters. The derivation is somewhat S(:) 0'.: a':paraeter.The2._.._ )(8a)

lengthy, and wil! be performed in three steps. We ;ak a-(:)a(:-') a:)a'(:-'

Sina 7rcssn
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A,. = N - -

N7 i: 7_ S d

aa 2 z'k dz
A s a =-N-

As we will see next, the following quantities are 2wj
also required.

aS~~~~z)~1 k4:) O''kIk n. (2

-- ' Ka(:)c1:)e( - l)  [.= I,.k

N I aS s.-Ss-tdz+ (9a) 2 21r- aak o' -~Ka(:-,)c(:)c(:-'). .

aS(:) 1- .= I f oa(:):-  dz$ -rz )ffi (9b) N-

So (:)=Kc(:)c(:-')' )K-2N- )  '

oS(z) a(:)a(z-') l1k1n, (13)
- :) = (9c)no"., Kc(:)c(:-')" N I O Sld

T..,., a 7
.2 Whittle's formula .Iir

Let S(:) be the spectral density function of a Nl 1 dz (14)
discrete time stationary zero-mean scalar process. 2 2cj K~c2(:)c:() :

and assume that this spectral function depends on - =

some parameter vector = 0......,jr It was
shown by Whittle [10] that the asymptotic form of sNI a S S-LS _, dZ
the Fisher information matrix 1, associated with r

these parameters is given by N ! a(:)a( - ) d

( ) N I a(:)a'( ) d (
where f represents counter-clockwise integra)ion 2 2-.j K2c (:)c :(:-

,k on the unit circle (z eJ') and N is the number These expressions can be evaluated by numerical
~of data points used to estimate the parameters O9. integration. However, if eicher a(z) or c(:) have

SIn the AR-plus-noise case the entries of the Fisher roots very close to the unit circle considerable care
information matrix are given by, needs to be exercised to avoid numerical problems.

-,, N2 I .f teaS .fs_..dz A more attractive way of computing l4.t is
- -l . irjJ' ;a aa-'- - described next.

o' i dz 2.3. Evaluation of the complex integrals( )To evaluate the integrals in 111)-(16) we must

of da i: -u' 1-t dez] first introduce some notation. Let the polynomial

K :rj f ()c (:),:- ) ' y(z) be defined by

VOI N. No. 3. ne o o n21jic ( ) 2 . a ( -) zT v l at h n e r l n il ) ( 6 e m s
*7Zik1 " is nrdcesm oain Ltteplnma



..94 B. FrW4iandirt R Pbout / Estimating AR signals in white noise

The stability of y:) follows from the stability of where e, _ (1, 0......Of an n-dimensional unit
cl:-). Next denote vector. Finally, let

X alz) a(:) z + a,.z'. 25)
r VII L'1' v,=v, (18)

0 0

* I LA? g,,:.- (26)

V-1 Then

where Ij = (0. 1...... a 2n-dimensional unit
Then it can be shown (13] that vector.

cV1 e T Using the quantities { vi, rl, hi, g, I defined above,
we can now evaluate the various complex integrals

~ 1( C)' I-2n+l. (19) introduced earlier. The first integral in (11) is just

Similary, we denote the coefficient of :k1l in the power series expansion
of

a, -a a. Note that,

a1  0t ) y 0) 11 4 D = ~ , -

r-,~

e.(21) Thus,

The

T T L-m,-Ie.10"I 
-

Next define, AnU~ C e~,B )

1 -~k,,§rn.(23 = T(C)k1NI-

a(X Z (T) ITTy

Then [M-0 . -T~e2 , (BT s I I

k- - eT(A,)'e, =TcTkI
2

Isj,

, e(A, -e,, m 0, (24) =[Lk-.£..Sn.,,. (29)
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whereGthe matrices S and are defined in eqs. x CT) e,, r A)-
i Al) and (A3) of the Appendix. C . .( IC

The second integral in (11) is the coefficient of xl A )'-'-roV,-k
.'- in the power series expansion of

= (_2 _ , ..... . v .k-,]G

S.)y( : )a( z )a( :-) . x U H[r. .. .. to*

Note that, '[ ,--.. . V-k]

x UH(r,,_, .... r)v,_ , (31)

where U and H are defined in eqs. (A8) and (A9)
of the Appendix.

= v, :l 5 r,,z-" The integral in (12) can be evaluated similarly
to the integral in (29), using a(z-') instead of

X-). The result of this evaluation is
H M X v,r,.:'" (30) f-k

Hence 2 y1 :)y(:-i)al: )

=z ( 'r( 2)k . -G Uelt

2rj y(.)y(:-)a(-)a(--') z =[Vk Z._,..., vJ]GUe,. (32)

It is straightforward to check that the integral in

m" Vk-..I.., (13) is given by

it ~j- .. kd:-,~~ ~ Z ,a ~vt-k  z
.r- r,.Vk-_ .+ . 2, yk--l-' " t"

Sao=. (33)

The integral in (14) is given by,

X l I d:VO+ _ = (34)
rn-Ij

"r n -+ rL,...--rov,- and the integral in (15) is given by
% I f a(:)a(z-') d: "

--"~~ ~ _ tc aevel-lc

(Co h2 ej i ( !') i-

Finally, the integral in (10) is given by

x e,.eT(A)...) p - roVI-k (36)

=T(cT)2 - Eqs. (29). (31)-(38) provide explicit expressions

for computing the entries of the Fisher information
x ,(CT) T M -e,,A (A,)"- P matrix. The computation f the quantities appear-

ing in these equations (the scalars v,, r, and *he
(C)-- matrices G, S, L, H) is discussed in the Appendix.

Vol S. No 3. June 1995
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296 B. Friedlande, B. Pbrat / Estimating .4R signals LIn while noise

3. Bounds on the estimates Of spectral parameters 3..Z The signal-plus- noise spectrum

In the previous section we developed the To evaluate the bounds on the signal-plus-noise
asymptotic bounds on variance of unbiased esi spectrum Sfe") we must evaluate the entries of

2Fmates of the AR parameters 6 -[a,,.... .q a., Dr ase
2 T In many applications one is interested not L a

in the AR parameters, but in some function of r)S(eJ"i OS(eJ') ;tS(eJ')1
these parameters, such as the spectrum of the sig- )a, ' kr o2 Y 39
nal-plus-noise (cf. (3)) or the signal only,

Straightforward differentiation of equation (3)
S,(:) = a:' (37) gives the following:

a~~a zTli~ =- - 2c; Re I el (40a)
In the case of signals with narrowband spectra we ilak ale)a(e' ) ale")
may be interested in spectral parameters such as Se'
bandwidth, center-frequency and power of each -1 (40b)___
narrowband component. In this section we derive ae'ae )

the formulas for computing the bound on the esti- -;S(e"') 4c(40c
mation error of various functions of the AR-plus- (.

noise parameters. To evaluate the bound on the signal spectrum

SpeJ') we must use
3.1. A general jormula T4P~i

Given a scalar function f( 0) of d parameter D

vector 0 ..... 0,,,T, the variance of any Se")Se)1
punbiased estimator of PO ) from N data points is -- 1. 0. (41)

bounded from below by the following generalized
Cramer- Rao bound [111: 3.3. Spectral parameters of a second order .4R-plus-

Varf1(8)} -, D T1 1 D, (38a) noise process

where Consider a second order AR process with a
polynomial having a complex pair of roots at

V.Dr a~f( 6) a, : )1a,

vector of partial derivatives, (38b) = I - 2p cos w~: + p(42)

The central frequency fo of the spectrum of this
4) I,, the Fisher information process is defined by the angle (or phase) of the

roots:
matrix associated with estimating f = /2- (43)

6 1 cf. (10)). (38c) To compute the bound on the estimation error

The computation of 1a, was discussed in detail in of fJ we must evaluate
Section 2. It remains to evaluate the derivative T? a)- t J; O aft

vector D for the functions of interest. -
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The partial derivatives are given by so-called noise bandwidth defined by

= 2 (45) .2- S,(e') dw

= __ .__ 4a, -a: The numerator is the energy contained in the posi.

ia: 4wa2.,, 4a. - ative frequencies, while the denominator is the peak

-0. (47) energy density. The resulting B is normalized with
o; ;i-a, respect to 0.5 Hz, I i.e.. for white noise, B = 0.5 Hz).

Note that
Another frequency of interest is the frequency

f for which S(e") is maximized. Note that in the l ,e"
second order case 2 e

o' ( 1+a,)
S, ~ 'e- 48) l-55).

ae'-, -o-az)+2a,( I + a) 8 2(l -a,)( I -- a+a, )iI.+-a.-a) 5
cos w -- 2a. cos 2w.

4a,
The frequency at which Stel') is maximum is S, el') I - a9)-t14a - a')' (56)

the frequency at which I/S,(e " ) is minimum. We Thus,
find this frequency by setting the derivative to zero:

( I - ao) I - a.)(4a - a) 57)h ~B=_a, I- a a)la_.(57
Sa/ - a. + a,)(1-a:-a)iII;

To evaluate the bound on the error variance of
= -2 sin w(al( I - a:) -4a. cos ] we need to compute

=0. (49)

The points w =0 and =correspond to minima Dr= 2a 2 " )  (58)

of St w). The maximum is attained at Note that

f=+_cos-'(_aI(1,a . (50) a logB -2aI2. ' 4 a . o B - a

/ a, 4a.-a2 I-_-a,+al I-ra,-a("
In this case (59a)

D af " log 1 I 4::: O:=,0~ J  (51) ,
-ia .laa. I--a. I-a. 4a,-a

where I (59b)

+a, (52)a-, a, I + a, - at

aa 2w sin 65 4a. Thus,
,-f I a, aB ; o

,a, 2-r sin 6 4a2" a aa B, (60a)

Another spectral parameter of practical interest hB ,; loa Br-- = " B. (60b)
is the bandwidth of the spectrum. We will use the 'na. a:

1.o NO io3 une 19.4

<,..~~~ %-:-."::; - :: :;: ;,. /- - : ::
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Finally, we consider the signal power, defined as 4. 1. Spectral bounds

oI d: Using the derivative vector D, (39) we computed
27 fa(:)a(-') -. ( the CRLB for the signal-plus-noise spectrum for

S, and S,, at different frequencies. The true spec-
For second-orderARprocess, the complexintegral trum and the = I standard deviation curves are
yields depicted in Fig. I and 2. These plots provide some

p=o1 +a 2 ) (62) insight into the achievable spectral estimation
(I - a:)( I '- a, + a,)( I + a, - a,) accuracy for the given signal and noise parameters.

To evaluate the bound on P we must compute

D FT aj P p ' 0 4.2. Bounds on center frequency, bandwidth and
D a- -, ;,'0. (63) power

Note that Using the derivative vectors in equations (51), ""

i. log P 1 1 (58) and ( 63) we computed the CRLB for , B and

;a, l+a.-al 1+ ' P for S, and S,, at different signal-to-noise ratios.
The results are summarized in Tables I and 2.

:,log P I I Examination of these tables reveals various
;a, I + a, I - a, interesting facts. In the narrowband case the center

frequency can be estimated much more accurately
- I +. (64) than bandwidth and power. Note for example thata -+2a+ a, II+ a,- a,

thus. at SNR = 3 dB the relative accuracy (i.e., standard
deviation divided by the mean) of I is 0.3%, of B

P log P 25% and of P 20%. The situation is similar in the
aa (65a) broadband case. However, the center frequency is

iP n log estimated less accurately than in the narrowband

- "_- . (65b) case. For example. at SNR=3dB the relative
,ia, , a accuracies off, B and P are 2.4%, 15% and 16%.

and finally, This type of behavior has been observed in simula-

AP I tion studies of various parametric spectral estima-
= - P. (66) tion techniques.a0"; a';

Inserting Di in (38a) gives an explicit formula for
computing the CRLB for various spectral param-
eters of practical interest. Table I

Bounds on the standard deviation of the estimates of . B and
P a:) I - .4z -0.95:;a.. - 0.04709: N = 1024

4. Some examples SNR(dB) 1=1.1224 8=0.01.81 P= 1.0

In this section we present a few examples illus- t-3 0.9440 -10-' 0.3153 -102 0.20050 0.1016. i0- 0.3473 l0-: 0.2068
trating the usefulness of the bounds derived in the 0.1128 • 10-: 0.3970 10-- 0.2200

previous sections. Two AR models are considered: -6 0.1309- i0' 0.4772 10' 0.2482
* -9 0.1612. 10= ' 0.6125 10-" 0.3072 =1

S,: a(z) = I - 1.4z+0.95z:2 (narrowband) -12 0.2147. 10-: 0.8528 I0-: 0.4278

S,: a(:)= I-0.45z+0.55:- (broadband) -t5 0.3137.0-: 0.1299 10' 0.6691

-' a .-
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QA
NI'

LIM'

Fig. 1. Spectral bound for Sf. -~ 0.04709,. -~ 0.1, SNR= 10 dB. .1= 256.

Table 2

Bounds on the standard deviation of the estimates of 8 an~d S. Conclusions
P at:,1l-0.45:-'-0.55z-2: a. -0.6384: N-I1024

We presented formulas for computing the CRLB
S.NR WBI 1-0.1986 9-0.1439 P- 1.0 for different spectral parameters of an AR-plus.

-3 04792I0~z 0.257 I~ 0.154noise process. The proposed formulas make it
o) 0.60)91 - 0-2 0.2940 10- o.1607 possible to compute the CRLB without requiring

-3 0.3486 - 0-: 0.4227 In-~ 0.2493 numerical integration. These bounds provide a use-
-6 0.1303. 10-' 0.6693 10-' 0.4224 ful reference point for the performance evaluation

-9 0.12188. 10- 0.1153 0.7637 of autoregressive estimation techniques.

Vi .N)1..n 94
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Fig;. 2. Spectral bound ror 5. o' , -0.6384, -j =0.i, SNR= 0dB, N-.256.

N Appendix: Some Lyapunov equations where i, = [I 0 .. ] is a 2n-dimensional unit
vector. Moreover, stability of the polynomials y(:) ,

,Let and at(:) guarantees that ( Al) is the unique solu-
I tion of IA2) [151. "

s=± C JT? .(l Let G be the matrix 3

*-' S clearly satisfies the Lvapunov equation -=. ". (3

S- C,.SB!=e,[ (A2) , ' -/..-_

a ~,,gnj PloceujiMq-

%I
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It can be checked by direct computation that entries are fully determined by their first row and

GC, = cT. column.
C . (A4) To compute {v,} we solve the Lyapunov equation

Hence: X _ CXCT  (A2)
G S -C T. TB _ s -G s T

C GSB. GS - GCwSB here X is a Toeplitz matrix. The first 2n terms

G1S-C,SBC) of {vf are the entries of the first column of X.

= Gi, ITr = . .  A5 Higher order terms of { vI are obtained from therecursion

It follows that, 
_u i

v,=- v, 2n. 1A13)
GS-' (C T  

TBT., .e Ie . (A6) "

Let Similarly, the first n terms {rj} are the entries of

Let the first column (or row) of the Toeplitz matrix Y,

" Cwhere
U= iC e(A . (A7),-,0 Y - A,.yCr= el eT , AW4

where e, = [I.0 .. 0] Tan n-dimensional unit Higher order terms of {r} are obtained from the

vector. U satisfies recursion

L,- C.AT = e, A8) rl= "ca,r, _ I -- n. (A15)

Let H be the matrix

I* These formulas are explained in more detail in (13].
! 0 a,].

H F (A9) i-:
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Optimal Instrumental Variable Estimates of the AR
Parameters of an ARMA Process

PETRE STOICA, TORSTEN SODERSTROM, SENIOR MEMBER, IEEE, AND BENJAMIN FRIEDLANDER, SENIOR MEMBER, IEEE

Absrocr-The modified Yue-Waiker (MYW) equations for estimat- mental observations as well as guidelines for further improve-
Ing the AR parameters of im ARMA process are presented as a special ments of MYW based ARMA estimation techniques.
case Of am iustrumental variable (IV) method. The consistency and The MYW method is related to the instrumental variable (IV)
accuracy or the AR parameter estimates me studied. It is shown that method of parameter estimation (81, [111, [ 121. In Section 11 we

4,. estimation acc racy Increases moatonically with the number of MYW define an IV estimator which is slightly more general than the
equations for so optimal choice of the weihting matrix used in the least. MYW estimators presented in the literature. In Section III we
squares solution of these equadoas. The asymptotic error covariance of establish the consistency of the IV estimates and develop an
the optimal IV method equals that of the prediction error method. The explicit formula for the covariance matrix of the estimation
results of this paper verify experimental results reported In the literature errors. This formula can be used to evaluate the asymptotic

• 'regardial the performance of the MYW method, and provide the performance of various MYW algorithms proposed in the
, necessary accuracy analysis. Furthermore. they suggest several simple, literature [231. [301. In Section IV we study the optimization of

asymplaticstl% efficient. multistep algorithms for estimating the AR estimation accuracy with respect to the weighting matrix and the

parameters, which are presented in a companion paper. number of equations. We show the existence of an optimal choice
of the weighting matrix, which minimizes the covariance matrix

IIT D Nof the estimation errors. Furthermore, we show that the optimal
1[. INTRODUCTION error covariance matrix decreases monotonicaily when the num-

* .fl HE need for estimating the parameters of an autoregressive ber of equations is increased, and converges as the number of

- ,moving-average (ARMA) process arises in many applications equations tends to infinity. The form of this limiting matrix is also

in the areas of signal processing, spectral analysis, and system presented. and in Section V it is shown that it equals the

identification. A computationaly attractive estimation procedure, asymptotic error covariance of the prediction error method. The

which has received considerable attention in the literaure i effect of a certain filter used in the generation of the instrumental

". based on a two-step approach: first the autoregressive (A riables on the convergence rate of the error covariance matrix

parameters are estimated using the modified Yule-Walke of the opimally weighted IV estimate is studied in Section VI. It is
pMaWr qatr s te n te usg tW r shown that there exists an optimal choice of this filter which gives
(MYW equations; then the moving average (MA) parameters ar the fastest convergence rate.
estimated by one of several available techniques.

In this paper we consider only the first step of estimating the The optimal IV methods presented in this paper can be used to
autoregresive parameters. In many engineering applications h derive several new AR parameter estimation algorithms with

second estimation step is not needed. The prime example is the improved accuracy and modest computational cost. In a compan-
"'" estimation of autoregressive signals corrupted by white measure- ion paper (24 we present several such algorithms, analyze their

ment noise. In this case all the information about the spectral asymptotic properties, and evaluate their performance by simula-

I shape of the signal lies in the AR parameters of the signal-plus- tion.
noise ARMA process (see, e.g., [291). Finally, we note that results related to those presented here

The relative simplicity of the MYW estimator motivated a appeared recently in [311-[331. The problem considered in these

number of authors to investigate this technique and to develop references is the estimation of the parameters of dynamic
various extensions and variations [l-[101. Most of this work has econometric models by IV methods with instruments that are not

'. been done in the context of high resolution spectral analysis. One exogenous. The approach used in [31 1-[331 is based on a different

of the important observations made in these studies is that formalism from the one used here.

significant improvements in estimation accuracy can be obtained
-.'. by increasing the number of MYW equations [21, [9]. The U. THE ESTIMATION METHOD
- resulting set of overdetermined equations is then solved by some

least-squares technique. The possibility of using a weighted least- Consider the following ARMA process of order (na, nc):
squares procedure was also discussed (see, e.g.. [1]. [21). A(q-')y(0-C(q )e(f(

Performance evaluation of the MYW method has in the past
been done by simulation. A formal accuracy theory appears to be where eft) is a white noise process with zero mean and variance
lacking. It is our objective in this paper to fill this gap and provide \ 2- and
an asymptotic accuracy analysis. This analysis clarifies the precise
role of increasing the number of equations and of including a A(q +)-l.aiq-i+... +a.,q
weighting matrix. It provides a valuable verification for experi-

C(qi)l +ctqi+ .. - +4q
"

MaMnuriacpt received Januar' 26, 1964: mvised March 28, 19M. Paper q-i
10onU11111de by PaM Asaociate Editor. A. S. Willsky. The wort of B. q- unit delay operator (q-ly(t)-y(t- 1)).
Fredlander wast suppre by the Army Research Office under Concracs

L DAAG29-13-C.0027. The following assumptions are made:
P Stotc is with dte ult,, de Ammaca. lasima Poliehoic Al:A(z) = 0 - Izi > 1; C(z)= 0 - zt > . In other

Elacaresti. Bluchares., Ronmania
T. S Bdarstrm is with the D prunent of Automatic C ad S words, the ARMA representation (1) is stable and invertible. This

Analysis. Insminu of Teclnolo , Uppala University. Uppaata. Sweden. is not a restrictive assumption (cf. the spectral factonzation
S. Fredlander is with Systerns Contol Technology. Palo Alto. CA 94304. theorem. e.g., (281).

0018-928&85/1100-1066S01.00 © 1985 IEEE
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where be shown that 13 , m = ,(m na) L211. However, for ARMA
"E(q)()lCq)(' processes we have in general J > P,.i.
S.. $=E{[C(q-t)z(t0l[C(q")z(t)l r }  (15) Since fl., is monotonically decreasing and also 6., > 0. it

follows that A3, will converge to a limit as m tends to infinity. A
with 4, R defined by (6) and (11). " formal discussion of the convergence of A., is given in Appendix

Theorem I can be used to evaluate various choices of Q, G(), B where it is also shown that
and m by comparing the accuracies of the resulting estimates. In
(301 we evaluated P for some low-order ARMA systems and Jd.= lim A,=X(E{#t)'r(t)}E{t).r(t)}] -  (18)
various choices of Q and m (with G(q') - 1). It was observed
that accuracy does not increas monotonically with m, in contrast where k(t) is the following infinite-dimensional vector:
with statements sometimes made in the literature on the overdeter-
mined MYW equations (21, (3]. Furthermore, it appears difficult.
if not impossible. to predict which ad-hoc weighting matrix Q will re(t- nc- I)
lead to best accuracy. (t=- nc-2) (19)

We have also compared the accuracy of the IV estimate to that C (q
given by the prediction error method (PEM) [18]. (191, (261, for [
some simple low-order systems. see, e.g., Example I in Section
V and the examples in (231. Recall that in the Gaussian case, the The limiting error covariance matrix Is. can be evaluted by
PEM error covariance matrix equals the Crarmr-Rao lower solving a certain discrete Lyapunov equation (see (A.5) in
bound. The differences in accuracy between the IV method and Appendix A and (B.17) in Appendix B). Note that P. is
the PEM were sometimes considerable, indicating that the IV independent of G(-). We will show, however, in Section VI that$ estimator with ad-hoc choices of Q, m, and G(q" -) is inefficient the choice of G(") affects the "convergence rate" of 6,..
(in the statistical sense).

The questions raised above motivate the more detailed exami- V. COMPARISON OF THE ACCURACIES OF THE OPTIMAL IV
nation of the accuracy aspects of th¢ IV estimates. In particular, it METHOD AND THE PREDICTION ERROR METHOD
is of interest to choose Q, m, and G(q') so as to increase the
accuracy of the IV estimate (6). This is discussed in Sections IV- The prediction error method has been studied widely in the
VI. context of system identification [181, [19], (261. The prediction

error estimate of the parameters (a,, c,} of an ARMA system is
IV. OPTIMIZATION OF ESTIMATION ACCURACY obtained by minimizing the loss function

The problem of determining optimal IV estimate in ti fairly
general clas of estimates defined by (6) can be stated as follows. V(di,'" d., ,,'" ')= et) (20)
Find Q,., m,,, and G.,(q-1) such that the corresponding ,
covariance matrix P., has the property P ; P,,, where P
corresponds to any other admissible choice of Q, m, and G. This where
type of problem was studied in [121, (131 for systems with
exogenous inputs, such as ARMAX systems. The results of (121, A(t) =/.(q ). (21)
(131 cannot be applied directly to the ARMA problem, as is (q)
explained in (301. Therefore, we must approach the accuracy
optimization in another way. As we will see, the optimization with The prediction error estimate is known to be asymptotically
respect to Q, m, and G(q - I) can be treated in three distinct steps. normally distributed with the following normalized covariance
We start with the optimization of P given by (14) with respect to matrix:
the weighting matrix Q, for which the following result holds.

Theorem 2: Consider the matrix P defined in (14). We have N
-.lim coy (di , JR6. e,, " -e}

P)(RrS"R) - Iis.. (16)

Furthermore, the equality P - J, holds if and only if [ "u)r(), -,r(t)] (22- )

SQR-R(RrS-'R) -I(RrQR). (17) w:" ." .'where
Proof. It is straightforward to show that

:'- ". r(t)---- [eft- 1). "" e(t-na)], (23)
'_& P ( (RrQR)R-)RrQ-(Rr S- 1R) - -R- 1 (Iq)

"S ; • $ (R r Q R ) " R r Q - (R r $ - R ) - iR r $ - l r . ( 18 ) , . = 1)[ Q - 1 . e I - n ) .( 4v/ --- ) eQt- 1), .-- , eQt-nc)]. (24)

Since S> 0, (16) and (17) follow. U
Not that (16) is closely related to the Gauss-Markov theorem It is straightforward to show from-(22) that the normalized

in regression theory (221. An obvious way to satify (17) is to covahan matrix of the AR parameter estimates obtained by the
set Q - -', in *hich cme P - IS,. PM is given by

Next we consider the opimization of 5. with lre to m. In
Section V1 (Lemma 2) we will formally prove that for the - coy (25)
optimal choice of Q, estimation acurcy increases monoton- (25)

6 caly with m, i.e., 15. ;0 P,, for all m ha. As was
mentioned earlier, this is not true for arbitrary choes of Q (231, where
(301.

Now that the results above are valid for general IV esimation *=[d,, ., a.] (26a)
problems. The detailed stricture of the matrices R and S is .ot
used anywhere in the proofs. Note also that for AR systems it can Dy-E{,(t)k(t) i,j-l, 2. (26b)
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The following result stat that the optimal IV method has the TABLEI
same asymptotic accuracy as the PEM. CONVERGENCE OF .. TO A. . P,.m FOR S, AND S1

Theorem 3: Let P. and Ppem be the covariance matrices
defined by (18) and (23)-(26). respectively. Then, under assump- ---- -1 ------- ------------------
tions AI-A3 P. - PpEm. T.

Proof: See Appendix A. - - ----As was mentioned earlier. in the Gaussian case, the PEM is an 0. . .- -. .

efficien estimator. i.e., PpE equals the Cramr-Rao lower 2 0.426 52.190 -6.320 6.276
bound [19], [221. We conclude therefore that the optimal IV 0.409 8.577 -2.181 1.689
method is an efficient estimator for Gaussian processes. If the 4 0.401 3.2e -1.151 1.48

" data are not Gaussian, then the optimal IV estimate, like the PE 5 0.397 2.147 -1.093 1.485
estimate, will still give the minimum variance in the fairly large 6 0394 . -1.131 1.481
class of parameter estimators whose covariance matrices depend 8 0.391 1.626 -1.1 1.46
only on the second-order statistics of the data. a 0.391 1.66 -1.189 1.461

It is interesting to investigate the rate at which AP converges to 10 0.390 1.589 -1,213 1.44s
, = PpEM, since in practice the value of m cannot be too large. Iz 0.390 1.580 -1.222 1.435

The "convergence rate" of J, is illustrated by the following 14 0.389 1.s77 -1.226 1.431
examples. 16 0.389 1.576 -1.227 1.429

Example 1: Convergence of P. to PpE.E: Consider the 1& 0.399 1.576 -1.227 1.429
ARMA processes 20 0.389 1.576 -1.Z27 1.429

-- -. . ..-----...-.-- ----.------- ----.----.------.-- .--- -----
S, (-0.8q -)y(t)=-(I + 0.7q ')e(t) 0.389 1.576 -1.227 1.4129

S, (I - I.5q' .0.7q )y(t) = I -q ' 0.2q 2)e(t) -----

where in both cases E{elt)es)} = = 1). For both S, and "'."',",
S,. we evaluated PpF.A and the optimal covanance matrix 5,,, for
G(z) n I andm = na, na + 1. . Theresultsareshownin
Table 1. where Idenotes the (i, j)th element of 1,,. Note that 5..
has e-sentially converged for m = 15. It is interesting to compare
the accuracy of the optimal IV method to that of the basic
modified Yule-Walker method (m = na, in which case the choice
of Q is irrelevant). The difference in accuracies can be quite .911
large. For example in the case of S1, the ratio of the variances of
d, corresponding to the two methods is about 30. For higher order
systems the difference of accuracy between the methods may be
larger (see (301). 48

Example 2: Convergence of P. to PpE.4: Note that 3,
approaches Pmem more or less at an exponential rate (cf. Example
I). To investigate the convergence rate in more detail consider the
general ARMA (1, 1) process

y(t)= -ay(t- 1) .e(t)+ce(- 1). (27) . ,

Assuming that

PP M, 4 +K-'y, 0-,<1, K-constant. (28) Fig. 1. The convergence of i., c - -0.9. varying a.

it seems reasonable to plot ln{(P,, - PpEm)IPPEmj versus m. This
is done in Figs. I and 2 for G(q -1) a I and different values of the -
parameters a and c. It can be seen that except for small values of
m, the curves can be well approximated by straight lines. This
justifies the assumption in (28). It is interesting to note that the
convergence rate depends strongly on c, and only weakly on a.
The convergence is particularly slow when c is close to - I (zero .
near the unit circle).

Similar results hold for c close to + 1. The large variations in
convergence rates for different parameters of the data motivates
the study of ways for improving the convergence rate. In the next

S section we show how the choice of G(q ') affects the conver- .
gence rate.

,.. ,VT. THE- OPTIMAL CHoICE o, G(q-

Ithis section we st ow tha the choice G(q) I /CI(q -1)

finite m. in fact for m - na. To see this we ste the following
I lermua. Note that in the following calculatiom we will add the

subscript m to R, S, zQ). etc., to emphasize their dependence on
the number of instrumental variables. " a "

Lemma 2: The farices (P4 form a noninceasing sequence. ig. 2. The convergence of is.. c -0.9. varying a.

%- . - .
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i.e.. ,f 1 o0 151W. I '" P-. Furthermore, all the equalities .

hold if and only if ]
RS;'x,,,,x-O for m ;na (29) .(A.)

where R., S., are as defined by (I1), (15), and
It is straightforward to show thatx-AE CZ~q")G(q-') etll. ) *°* "

=_E C(q'-)e(t). -.-- 0.
Ci(q - I)G(q ) ) 1

A(q") for k;tnc+ 1, (A.2)

Proof: See Appendix C. U and hence
It is now easy to see that the choice G(q -') = I/C(q" 1), will

satisfy (29) and is. therefore, optimal (although not necessarily the I , = Ak..,, for k t nc+ I (A.3)
only optimal choice). We state this formally in the following
theorem. where A is the following companion matrix associated with the

Theorem 4: Let assumptions A I-A3 hold true and consider the polynomial A(z):
IV estimate (6) with m = na and G(q "') = I/C-(q "') (the
choice of Q is irrelevant in this case). Under these conditions the Fa, a - -. "
IV estimate will be optimal in the sense that its asymptotic (N - -.
oo) covartance matrix equals P.( = PpM). A = 0(A )

Proof. Direct consequence of Lemma 2.

VII. CONCLUSIONS

We presented a detailed analysis of the accuracy aspects of a It follows from (A. I)-(A.3) and (18) that
general IV method for estimating the AR parameters of an ARMA
process. The basic accuracy result (Theorem 1) is useful for l -F; 1 *

evaluating the performance bounds for the varibus MYW related J 5 l _ A P A . ' A AArA JIA r]

estimation techniques discussed in the literature. See, for exam- ' '  ,
pie, the discussion in [231. [301. I r

More importantly. Theorem I can be used to investigate the =42
existence of opinal IV methods. We derived a lower bound on
the estimation accuracy of IV estimators and presented methods In other words. 5. satisfies the following Lyapunov equation

for thisr bound. aifistefolwn Lau eutofor achieving this bound. [see also (B; 17)
The first method involved an optimal weighting matrix Q -

S ,and letting the num ber m of inmuenal variables increase (
to infinity. In this case the choice of the filter G(q-') becomes -(A.5)
unimportant and we may set G(q-) I I (see Theorem 2).

The second method involved an optimal filtering operation Since A is a stability matrix, (A.5) has a unique solution, (see,
G(q - ') - I/C 2(q-'). In this case the asymptotic bound is e.g.. [201). To show that Is. - P" it is thus sufficient and
achieved for m = na, and the choice of the weigting matrix Q is necessary to show that PF& satisfies the same Lyapunov equation
unimportant (see Theorem 4).

Furthermore. we have shown that the optimal IV method has (A.) We do this in the following steps. First note that
the same (asymptotic) accuracy as the prediction error method A(t)=,(t+ 1)-e(t)u, (A.6)
(see Theorem 3).

The methods discussed above suggest two new algoridms for where
estimating the AR parameters of ARMA models. These al-
gorithms are discussed in some detail in a companion paper [241.
Note that both of these methods require knowledge of certain u1 -([ 0 ... 0] (A.7)
quantities (such as C(q - 1)] which are not available a priori. In
[241 it is shown that replacing those quantities by their consistent
estimates does not degrade the asymptotic estimation accuracy. and therefore

Finally. we note that the optimal weighting matrix - ADtA rDtII- XuuI (A.8)
(required by the first method) can be estimated without explicit where Di is as defined in (26b).
estimation of the MA parameters. This is convenient in some we sinrd(
applications where one needs only estimates of the A Next, we introduce-

00ters. -

C =(A.9)
Pwoo , Timoit 3 ;} 1 0

Let us introduce the following notation: and am that since c.. 0 the cmpanion mamx C is
= A- e C ) -

/ 'tnonsingular, and that
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where then from (A. 15)-(A.IS) we have that

U2in[I 0 '-'01r (A.I11)
nc D 12D 'i- [ro r, ... r,,,- ,] d, C,--2  

A l

We can now write

AD,UD'D A r-AD,Cr(CD,,Cr) -'CDIT r
= Rwu, - c r,. - c.o - rrll/xz

-(D, -, u,uXD,- Xuzu) -(Dr - uzU ) (A. 12)

where D12, D21, Dj, are as defined in (26b). It follows from the
matrix inversion lemma that which gives

Z! D'urD • (A.13) U,-Djzuz-lXZ

By using (A.8). (A. 12), and (A. 13) we obtain after some To evaluate the denominator of the right-hand side of (A. 14). we
straightforward but somewhat tedious calculations use (A. IS) to obtain

-iin

. . (u, -Dl2D2 uJ(u,D 1 ,DCuir ! - Xur. DlU2= -(l-c W)=c-.

l-Xu('. u,-  It follows that the right-hand side of (A.14) reduces to Il/
X1 .4,)jr , which is precisely the right-hand side of (A.5). We

(A. 14) have shown that Is; I and P4M obey the same Lyapunov equation
According to a well-known formula for the inverse of the and therefore ,;' =dj,.

covariance matrix of an AR process (271. we have APPENDIX B "

{[j C ntiWpeni CONVERGENCE OF A
X (A.5) n this Appendix we consider the convergence as m - w of the

inverse of the optimal error covariance matrix
r (B.-)

. ZS; I R. (a. 1)
To proceed we note the following properties of the covariance
elements of D12. Let where R., and S. are defined by (11) and (15), respectively. We

start by introducing the following notation:

E{ t) - t ) (A. 16) f-~~)-Gq'ytk)

We have 
fk

', + C O Ot - + • " " + ,, -M r I ( B .2 )

E !: (t) - 1 eQt- k) '-" (q-') C( -) Note that

-4, for all k, (A. 17) *t +. ,,-
anld =E{A(q'1)y(t) " - (q-').yQ-k)} =O, k;tnc+ 1. (B.3)

If we let A be the companion matrix defined in (A.4). then (B.3)

ME e(Q ) e(t- implies that
" =E ( ) • ~-)A=A,,, k;tnc+ 1. (B.4)

[X2 k=O Let us alsintroduce-' <0 (A.18)
0 k<0. y(t) - C(q-')(q - 1(t,

If similarly to (A.1) we introduce *r-E.(t) .E(t-i) ... (t-rm)M,

" * = - {Y(.0} .S. .. B.5)Li:=  ] " We can now state the following result.

Lemma B): Consider the sequeice of matrices A5; ', m - 1.2."" defined y (B. 1). The following Lyapunov-type equation
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holds truean A)S- , r -. )

WS.' +. +O(mA 6). (B. 13)

(A:ARLS._'.)r,  m= I. 2, ".. (B.6)

Proof: First note that according to (B.4) Consider first (B. 12). We have

R. ,. - E{0(t) •'', / ]h
-[(Ac' ARr]. R 1 E[0(1) • G(q-:) 1,Y(t-n¢-

Next. we have L . (

fl y -, . r 0 0
Lm- . S. S- =E' 00L Gq i Y( tc- YI

to, S.'. -I $,
I -I r+-

Therefore. we can write E ( 0 ( )  e(f -
nc )

R. S -,R.,-Am.Rwr =- E{0() • G(q-')y(t-nc 3
+ + -A)I (B. 14)

S which concludes the proof. 3 Further straightforward calculations give
Next, we study the limit as m -w of the right-hand side of 1

(B.6).
Lemma 82: Let m - w.. Then. under assumptions AI-A3 t".

(B.7a) (B. 15)

I q I ,r-AR, S ,,"E 10(t) • C--eJ-c-I1)] Combining (B.14) and (B.15). we obtain

Proof. Define 
AR[ ] 

I I
- Aq "') (h 0=1). (B.8)hi '; C~.'G~ ' = , +0/x"'.(B. 16) -

Due to assumptions AI and A3 This equation together with (B.12) implies (B.7b). Next consider
(B. 13). We have

Ihkl <c91 (B.9)

where c is a constant, and 0 < g < I is the maximum modulus of [
the zeros of CI(q')G(q"). Now A(q-')(t) =E W. hit-i)
C2 (q - ')G(q - ')e(t). so that for m large enough we can write "

It follows from (B. 10) that ly 1-0

S-E (Q t) ,--,EYN)I+O( ")

-S. +0( ). (B.l) which together with (3.5) and (B.13) proves (B.7a). This

concludes the proof of Lemma B2.
It is now straightforward to evaluate Is. 4 Um. -. JS. The

Hence limit exists since we have shown earlier that 5 ;;P A.., >00 (see
[ Lemma 2). Furthermore, it follows from Lemmas B 1 and 32 that

AR ,' J.- -AR .  1 o(m i'), (B-12)

LJ r

%*
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As is well known, under the given assumptions the solution of AE y~- 1)

show 1ha) is unqu and 1  ThereforebyWEC(q')G(q') - Sa ,,

In Appendix A we have show thtA*-Af .- hrfr.+Cq- )~ ~( I)I} a 0 (C.3)

I5~,#T where

(44,, I ~~~Next, introduceO, .0a,, n .

which is precisely (18). I

APPENIIx C fknd ~ t - (C')~tk4; t

PROOF OF LEMMA 2k-

Note that we can write

.=E[C(q')z.(t) C(q'1)G(q ')yQt-nc-m-Il.) and, therefore, that

a=EC~ -I)~q-Iy(112 A~aAk I+, - a. 0 for kc~nc+ na.

*and It follows from (C.3) that

R. 1 *,R rSV,.-0 = + R'a -R rS._'x,..

L - i However, from (C. 1) iuid (C.2) we have,
(O-l~)-G(qU)y(t-nc-m-l)}. 0o

001

L 1J 1 LRmw~-i,_ + -aer. 0, for ntra

where ~ ,[~-~s (CAi) Hence. (C.2) reduces to (29) and the proof is completed.
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LEAST-SQUARES, YULE-WALKER, AND OVERDETERMINED YULE-WALKER ESTIMATION
OF AR PARAMETERS: A MONTE CARLO ANALYSIS OF FINITE-SAMPLE PROPERTIES

SPetre Stoica, Benjamin Friedlander, and Torsten Soderstrom

ABSTRACT

A Monte Carlo analysis of the accuracy properties of least squares (LS),

Yule-Walker (YW), and the overdetermined Yule-Walker (OYW) methods for

estimating the parameters of autoregressive (AR) processes is presented.

Comparisons of the estimated finite-sample accuracy to the theoretical

asymptotic accuracy are included. It is shown that considerable differences

may occur in some cases. Choice of the number of equations in the YW system

of equations is discussed. Some remarks concerning the feasibility and

4usefulness of an analytical study of the finite-sample accuracy properties are

also included.
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I. INTRODUCTION

There are many parameter estimation methods in use today. For most of

them, an asymptotic accuracy theory is available. The interest in

establishing the accuracy properties of an estimation method is motivated by

at least the following: (i) interval estimation; (ii) hypothesis testing;

(iii) accuracy comparisons with other estimation methods; (iv) accuracy

optimization with respect to some "design variables" which are at the disposal

of the user. The asymptotic accuracy theory has often been used for solving

problems such as those listed above. However, in some cases, the asymptotic

theory is not applicable for the sample lengths encountered in practice. In

recent years, three main directions of research for overcoming this difficulty

have appeared:

(i) Analytical studies aimed at establishing the exact finite-sample

accuracy (moments or distribution) of the parameter estimators; this turned

out to be possible in some simple cases (a typical example being the LS

estimator of the first-order AR parameter). See [4, 6, 9, 10, 23].

(ii) Higher order approximations of the exact accuracy (moments or 0-

distribution). This approach proved more flexible than the one above, yet

provided quite accurate approximations; see [1, 17-22]. q

(iii) Monte Carlo analysis of the finite-sample accuracy properties.

This is a conceptually simple and general approach; see [5, 7, 8, 12, 15].

The iim of this paper is twofold: (i) To comment briefly on the three

general approaches mentioned above. This general discussion is included in

the next section. (ii) To consider a specific estimation problem for

668b2
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illustrating some of the main issues addressed in the general discussion.

More specifically, the problem of estimating the AR parameters is considered,

and a Monte Carlo analysis of the accuracy properties of three methods

frequently used for AR parameter estimation, Least Squares (LS), Yule-Walker

(YW), and Overdetermined Yule-Walker (OYW), is presented.

It is perhaps worth remarking that most papers on small-sample properties

have appeared in the econometric literature. A possible reason for this is

the fact that econometricians deal more often than engineers with short

samples (for example, containing around 50 data points). However, as the

simulations of this paper will show, significant discrepancies between the

finite sample behavior and that predicted by the asymptotic theory may well

appear even for sample lengths encountered in engineering applications.

An outline of this paper is as follows. A general discussion on

approaches to the analysis of finite-sample distributional properties of

parameter estimators is given in the next section. In Section 3 we briefly

describe the LS, YW, and OYW methods for estimating the AR parameters. Their

asymptotic accuracy properties are reviewed in Section 4, where it is also

shown that the asymptotic covariance matrix of the YW estimator is bound from

above by the covariance matrix of the 0YW estimator. Section 5 contains the

results of a Monte Carlo analysis. Finally, some concluding remarks are

presented in Section 6.

2. GENERAL DISCUSSION

There are at least two points which are of interest when discussing the

-- approaches mentioned above: feasibility and usefulness.

6868b 3



For many estimators currently in use it is a formidable if not impossible

task to establish the exact finite-sample properties of the distribution. In

some simple cases, this task becomes feasible but the resulting exact

expressions (for example, of the distribution moments) are so complicated that

their usefulness may be questioned (see [10] and its references where a

cumbersome formula is given for the finite-sample variance of the estimated

parameter of a first-order AR process).

Specifically, let us suppose that 4 is the unknown parameter vector

and 4N its estimate obtained from an N-length sample. Introduce the

normalized covariance matrix of the estimation errors

PN) N E (4N-e)(4N - 9)T , (1)

and let P=(e) denote the asymptotic covariance matrix

P.(&) = lim P (e) (2)
N * N

For many (consistent) estimators currently used in system identification, the

above limit exists under weak conditions. Furthermore, we have

PN(&) = P-(e) + 0(1/N) 1 2  (3)

In practice, when using PN(9) or P,.(9) for purposes such as interval

estimation or hypothesis testing, we have to replace 9 by 4N- Since

N - e= O(1/N 11 2 )

we have

1°
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S(') 9 PN(9) + O(1/N
1 /2)

On the other hand, from (3),

1/2
Sp(@N) = PN(e) + O(1/N

Thus, there is apparently no guarantee that PN(9N) is a better estimate

r of P than isN() P(N). The above discussion is valid for N

sufficiently large. For "small" N, the above calculations are no longer

valid. However, since PN(9) has a more complicated expression than
,3A.

P (e), it may still be true that replacement of e by 9N may in some

cases lead to larger errors for PN(') than for P.(-).

-Next consider the problems of accuracy comparisons with other estimation

--. methods, and accuracy optimization with respect to some "design variables"

" * which are at the disposal of the user. For many estimation methods, there

exist asymptotic results for both the optimization of accuracy and for

- Tcomparison with the accuracy achieved by other estimation methods. However,

these results may fail to apply for the sample lengths encountered in practice

and are thus of little use in such situations. For example, asymptotically

equivalent estimation methods have been shown to behave quite differently in

. "-. the finite-sample case (see [5] and Section 5 of this paper). A considerable

departure from asymptotic theory was reported in [15], where it was shown by

extensive Monte Carlo simulations that in some cases the ordinary LS estimator

may be better than the idealized Markov estimator in terms of both bias and

variance. Since PN(e) will in general have a complicated expression, it

,K -. is unlikely that analytical comparisons and optimizations of accuracy would be

. :6868b



possible in the finite-sample case. However, what should be possible is to

evaluate PN(e) numerically for different N and a. This may serve to

identify sets in the parameter space and values of N for which one

estimation method is better than another, and also to provide guidelines for

"optimally" choosing the design variables defining the estimation method in

question. The Monte Carlo analysis approach addresses the two objectives

mentioned above. The Monte Carlo approach provides only an estimate of

P,4(e) (or of the distribution function). The larger the number of

replications used in the Monte Carlo experiment, the better will be this J

estimate. Furthermore, a Monte Carlo analysis may be quite costly in terms of

the computer time involved. However, when an expression for PN(e) is not

available, the Monte Carlo analysis nay be the only solution at hand. The

Monte Carlo analysis may also be the preferred approach when the evaluation of

the available expression for PN(9) requires a very cumbersome algorithm

(see [3]). Extensive Monte Carlo analyses for evaluation of various

instrumental variable methods are given in [27,28].

*- Finally, the development of higher order approximations for estimator

accuracy seems to be the most promising one from a theoretical point of view.

Essentially, it follows the lines of the asymptotic analysis but takes into

account also some higher order terms in (3). Truncating asymptotic series

expansions after a small number of terms is frequently used to get improvea

approximations of parameter estimate distribution or of its moments. A

different approach to approximate analysis of finite-sample distribution was

recently proposed in [20].

6868b 6
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In many situations, the development of approximations is a more feasible

theoretical approach than the development of exact formulas. Also, it should

lead to more manageable expressions for the covariance matrix of the

- estimation errors, etc. We believe that this approach is a topic that

q warrants more attention. Some recent results on the finite-sample covariance

structure of the sampled covariances of ARMA processes (see [2, 3]) might be

S-. useful in this context (at least for studying the so-called correlation-based

techniques). We may also remark that Monte Carlo simulation results may be

Yuseful when deriving approximate finite-sample properties of the distribution

by using the analytical approach of [20].

In the next section, we will consider three methods for estimating the AR

parameters. Even if estimating the AR parameters is apparently one of the

simplest dynamic estimation problems, an exact finite-sample accuracy theory

does not seem to be available for any of the methods considered. An analysis

of the finite sample properties is beyond the scope of this paper. Instead,

w e resort to Monte Carlo analysis to show that:

(i) The asymptotic and finite-sample accuracy properties may be quite

p* different in some cases. (ii) The number of YW equations used for estimation

has a considerable influence on the accuracy. (Some guidelines for choosing

- that number are discussed.) (iii) The LS method performs in most cases

q better than the other two methods tested.

3. ESTIMATION METHODS

Consider the following general AR process

y(t) + aly(t-I) + ...
+ aY(t-) = e(t), (4)

6868b 7
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w4here fe(t) is a sequence of independent and identically distributed random

variables with zero mean and variance denoted x2, and the real

coefficients Jai4 are such that the polynomial
n °'

A(z) = 1 az ... + a n Z (5)

has all its zeros outside the unit circle.

The AR model (4) is used in many applications in engineering,

econometrics, biometrics, geophysics, etc. and a number of methods are

available for estimating its parameters. Of these, perhaps the most commonly

used ones are the following three.

3.1 The LS Method

Let a denote the vector of unknown parameter

= [a ... an]T (6)

The LS estimate of a is defined as

N

Sarg min Z [y(t) - J(t) ]2 (7)
e t=n+l

where

,:( ) -y(t-1) . . -y(t-n)] T  (8)

After some straightforward calculations, (7) produces the result [29]

N - 1 NT
a LS L - 0(t) &1(t)] [ - (t) y(t) 1 (9)

t=n+l t=n+l

6368b 8
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The inverse in (9) exists at least for large N.

3.2 The YW Method

As can be easily seen from (4), the coefficients lai satisfy the

following equations:

rk + a1k-i ... + an rk-n = O, k > 1, (10)

where

rk = Ejy(t) y(t+k),

and where E1- denotes expectation.

Equations (10) are the so-called YW equations and the estimate obtained

after replacing trkI by

N-k
r - y(t) y(t+k), rk = rk, k = 1, 2, ... , (11)k_

q in the first n equations of (10) is called the YW estimate. Thus, the YW

estimate of a is given by [27]

ro 0 n-i r,

" . YW= -(12)

r n- I ro 0 6 rn -

Numerically efficient algorithms for solving the linear system (12) exist.

For example, the Levinson-Durbin algorithm solves (12) in 0(n2 ) arithmetic

U 6868b 9
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operations. The Toeplitz structure of the matrix in (12) makes the YW method

more efficient numerically than the LS method (9). (Equation (9) needs

approximately n/2 times more multiplications than (12).) The LS estimate

(9) and the YW estimate (12) are, however, asymptotically equivalent. For

large N we have

LS e9 w 0 1 .(13)

This result can be readily established.

3.3 The Overdetermined YW Method

The OYW method is based on the recognition of the fact that the

Yule-Walker equations (10) involving high lag coefficients (rk, k > n)

should be considered when estimating the parameters Jai" of 4). Then,

instead of (12), one obtains an overdetermined system of equations which is to

be solved in a least-squares sense. The OYW estimate is thus given by

0 " n-1 1 i

]4OYW+ [ ]' min (14)

Lr _r Lr Q

where jIxj12 = xTQx, and Q is a positive definite weighting

matrix of dimension mxm. A numerically stable procedure for solving (14) is

the QR algorithm.

Intuitively, we expect that the additional equations in (14) will improve

the estimation accuracy, unless the sequence of covariances rk dies out

rapidly. In other words, fur narrowband processes (14) with a relatively

6868b 10



large m should be preferred to (12), while for broad-band processes (12) may

3 be preferable. The choice of m is discussed in some more detail in Section

5. We generally set Q I.

The above conjectures pertaining to the choice of m are supported by

practical experience with the method (see, for example, the simulation results

in Section 5). The practical experience contradicts once more the asymptotic

theory. See the next section where it is shown that (12) is asymptotically

more accurate than em, (14), for any m > n.

4. ASYMPTOTIC DISTRIBUTIONS

The LS estimate is asymptotically normally distributed with mean

equal to the true parameter vector a and covariance matrix given by [27],

P - [Ejc,(t) CDT(t) (15)

In view of the equivalence (13), the YW estimate gYW has the same

asymptotic distribution.

It follows from [24] that the OYW estimate gOYW is asymptotically

normally distributed with mean e and covariance matrix given by,

= 2 1 (16)

N- (RTQR)-RTQSQR(RTQR)
- ,  (16)

where

R= "
rml ."" r m-n

6868b 11
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and

f i: £ " rm.

The relation between the covariance matrices P and P is of interest. The

following result holds.

Lemma. Consider the covariance matrices P and P defined by (15) and

(16), respectively. Then,

T >P (17)

Proof. See the appendix.

The results in this section are valid for a "sufficiently large" N.

What constitutes a sufficiently large N depends on the $a i  parameters,

or more precisely, on the location of the zeros of the polynomial A(z). This

is illustrated in the next section.

5. MONTE CARLO ANALYSIS

In this section , we report the results obtained for the following two 7

second-order AR processes:

S: (1- O.9q-  + 0.2q -2) y(t) = e(t), (18a)

6868b 12



and

S $2: (1- 1.75q -1 + 0.76q - 2) y(t) = e(t) (18b)

0%" The poles of S1 are located at 0.4 and 0.5; those of S2 are equal to

0.8 and 0.95. For each system, 50 independent realizations of 2000 data

points each have been generated. The noise sequence fe(t)j was obtained

using the pseudo-random number generator NORMAL included in the statistical

library of the FELIX/IRIS computer. NORMAL generates independent normal

variables with zero mean and unit variance. The initial values required to

start the recurrent calculations in (17) and (18) were simply set to zero.

The first N samples of each realization, with N = 100, 300, 500, and

2000, have been used to estimate the system parameters. The LS, YW, and OYW

methods briefly described in Section 3 have been used to get parameter

estimates. The OYW method has been applied for various values of m (see

h(14)).
A.

Let a' denote the estimate of ak obtained from the i-th data

realization by using one of the three methods under consideration. The

following quantities have been evaluated (for k =1, 2).

. 1 50 i'

- - ak ,  (mean value of a

i-ia - akd(ak) ak , (percentage bias of ak) ,

502

var(a5 i (ak -ak) 2 , (variance of a

6868b 13
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and

MSE(ak) = var(ak) + - a , (mean square error of ak).

The results obtained in the different cases are displayed in Figures 1 through

6. The asymptotic values of var(ak) are also shown (in Figures 3 and 6).

(The same symbols are used for the Monte Carlo and asymptotic results. The

asymptotic results are the ones not connected by straight lines.) For

S(ak), the asymptotic value is zero. The following remarks can be made

regarding these results.

(1) For the LS method, asymptotic theory holds quite well for all the

sample lengths considered, for both S1  and for S2. For the YW and OYW

methods the situation is different. For S1 , asymptotic theory is

applicable for reasonably short sample lengths (e.g., for N = 300). However,

for S2, a good agreement between finite-sample and asymptotic behavior was

found only for very long sample lengths (N = 2000). For short sample lengths,

considerable differences between asymptotic theory and practical behavior

occurred, especially for the YW method. For sample lengths of 100, 300, and

500, the YW method is by far the least accurate of those tested, despite the

fact that the asymptotic theory recommends it as being the best. For the OYW

method with m = 20, 30, or 40, the differences beteen asymptotic theory and

practical results are not so large as for the YW method (e.g., for m = 20 and

30, the estimated and asymptotic values of the variances are in agreement

for N > 300). It is interesting to note that for large m (e.g. m = 40),

the finite-sample variances may be smaller than the corresponding asymptotic

values.

6868b 14 .

.4% -k



k2) The LS method outperforms the YW and OYW methods. It gave the

smallest MSE's in almost all the experiments performed. In most cases the LS

method is superior to the YW and OYW methods in terms of both bias and

variance of the parameter estimates. The superiority of the LS method over

the YW and OYW methods is clear in the case of S2. For S1, the LS

method and the YW method gave quite similar results.

The ranking of the OYW methods (m > na) appears to be in accordance

with the asymptotic theory only for S1. For this system, m = 2

7(corresponding to the YW method) gave the best results; when m was increased

beyond 2, the estimation accuracy deteriorated. For S2, the choice of m

to get "best" accuracy is no longer so clear. Here, the "optimal"

finite-sample value of m is certainly larger than the asymptotically optimal

value m = 2. This was also the conclusion of a large number of empirical

studies reported in the signal processing literature. It is difficult,

however, to give precise rules for choosing m. In loose terms, the closer

the system poles are to the unit circle, the larger should be m. For a given

system, the "optimal" value of m depends on N. The larger N the smaller

should be m (see, for example, Figure 4).

6. CONCLUSIONS

-We presented a Monte Carlo analysis of the accuracy properties of several

methods for estimating the parameters of an autoregressive process. The

.* differences between finite-sample accuracy and the theoretical asymptotic

accuracy were discussed. These results provide some useful insights into the

behavior of these estimators.
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APPENDIX: PROOF OF THE LEMMA

Let

It is straightforward to show that

P -P [(R QR)-' RTQ - (R slR)-' RTS-1 S E(R OR)1 T

-(R S-R)1 RT51] (A.2)

It follows that P > P.

To conclude the proof, we next show that P> P. This is equivalent to

showing that

*E c't) T (t) R RT s- R > 0

which in turn is equivalent to

y(t-n)

9.y( t-m)I
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CrClPUTATION OF THE EXACT INFORMATION MATRIX OF
GAUSSIAN TIME SERIES WITH STATIONARY RANDCM CCAPONENTS

'-.Boaz Porat Benjamin Friedlander

Dept. of Electrical Engineering Systems Control Technology, Inc.
Technion, Israel Institute of 1801 Page Mill Road
Technology Palo Alto, CA 94304
Haifa 32000, Israel

ABSTRACT

The paper presents an algorithm for efficient recursive computation of

the Fisher information matrix of Gaussian time series whose random comoonents

are stationary, and whose means and covariances are functions of a parameter

vector. The algorithm is first developed in a general framework and then

specialized to the case of autoregressive moving-average processes, with

possible additive white noise. The asymptotic behavior of the algorithm is

explored and a termination criterion is derived. Finally, the algorithm is

used to demonstrate the behavior the exact Cramer-Rao bound for some AP1A

m processes, as a function of the number of data points. It is shown that for

processes with zeroes near the unit circle and short data records, the exact

.ramer-Rao bound differs dramatically from its common approximation based on

asymptotic theory.
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1.. iNTRODUCTION

A general time series {yt} can be decomposed as

Yt = xt + MrV (1)

where m is a deterministic sequence and {xt} is a zero-mean random I
sequence. In this paper we consider time series whose random components

{xt} are stationary Gaussian processes. The joint probability density of N

consecutive data points, say {y,, yo , ... YN-1 , is given by

f(y) (2 )-N/2[det R]-/ 2 exp- 1f T R -1Ey-ml , (2)

y where

v y0,y. . Y%_-3 T m mN T,

and R is a Toeolitz matrix whose elements are the covariances of Ix.t , i.e.

(R) t+ij t} ; 0 < i, < N-I. (3)

.e now specialize our discussion to the case where the sequences

'mo, m 1, ... and jr r, ... } are functions of an M-dimensional vector

a . Such time series are said to be parametric, and e is called the

parameter vector.

Parametries Gaussian time series are very common in many statistical and

engineering aoplications. As examples we mention autoregressive (AR) and

autoregressive moving-average (ARMA) processes [1]. A problem of considerable

2
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interest in parametric time series analysis is that of estimating the

parameter vector 9 from a set of N consecutive measurements. As is well

known, the variance of any unbiased estimate ; is bounded from below by the

inverse of the Fisher information matrix, i.e.,

a - Va{e} (a) , (4)

where

alogf(y) alogf(y)
[E(t)Ik, = } 1 1 k, M . (5)

For Gaussian time series, the Fisher information matrix is given by the

expression

R(e l)  m() T am(q)
!JBl 1tr[R-1(e) .~~R1(a) aR(3-i+ r-.' -6

k Lk

(6)

where tr{.} denotes the trace operator. While formula (6) is known, its

proof does not appear to be readily available in the literature. We,

therefore, provide a proof of this formula in Appendix A.

N When the mean vector m is zero (or is independent of e ), and when the

number of data points is sufficiently large, the information matrix can be

approximated by Whittle's asymptotic formula [23

a (W) 3,b U
N r k .w (7)

L k,z Z.

3
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where ~()is the power spectral density function,

Ja

0 w + 2 7' rk cos kw (8)

The use of Whittle's asymptotic formula is quite commron in time series

analysis. In particular, for ARMA processes this formula yields a relatively

simple closed-form expression - see e.g. £1, p. 240-2423. However, the

quality of this approximation (7) depends heavily on the nature of the process

and on the number of data points, and may yield highly erroneous results if N

is not sufficiently large.

Direct computation of (6) (assuming that the sequences (mot i 1  ... }

(rot r1,.. and their partial derivatives are known) requires a number of

operations proportional to N3 . In some cases it is desired to compute the

values of J(e) for all 1 4 n 4 N ,in which case the total num~ber of

operations is proportional to This is probably one of the reasons why

the exact formula (6) is not widely applied.

In this paper we derive an algorithm for recursive computation of the

Fisher information matrix. The algorithm computes the information matrices

for all 1 4n 4 N in a number of operations proportional to M2 . Thus, theL

algorithm is considerably more efficient than the direct use of formula (6).

The algorithm is based on the well-known Levinson-Durbin algorithm for

computing the orthogonal polynomials of a Toeplitz matrix.

The general algorithm is derived in section 2 of the paper. In section 3

we specialize it to some common rational parametric models. In section 4 we

discuss the asymptotic behavior of the algorithm and give termination

criteria. In section 5 we illustrate the use of the algorithm. by some

examples. It is shown that the exact CRB differs dramatically from the

-U



asymptotic CRB in some cases.

The relative computational efficiency of the algorithm described here -

makes it possible to use the exact CRB for performance evaluation of MA

estimation algorithms. The exact CRB provides a very useful reference point
p for studying and comparing various estimation procedures proposed in the

r,
li terature. The fact that in some practical examples the exact CRB differs

considerably from the asymptotic CRB motivates the use of the algorithm

proposed here, rather than using the somewhat simpler asymptotic formulas.

il.
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2. THE ALG0RIT4F

n;

ar n(e) = awnkM (9)
5n,k 2 aek ' n,k ask

The values of "r n, in, s n,k U 0 n ~ n ~ -, 1~ k 4 M} are assumned to

be available to the algorithm.

Let p n % .nk and v nk denote the vectors

[r,, r 2 9 .,rn mT a~ = EsI1 kI 
52,k' ...I Sn kI T

T
L.~ uO,kl Ulk, . .. k

Let R and Sn be the (n+l) x In+1) Toeplitz mtie

R~ n) = r.ij( ~ j=S- ~ j4n(0

Let 2. be the (n+l)-dirnensional vector

The components of In are the coefficients of the n-th orthogonal (so-called

Levinson-Szego polynomial of the sequence (in0, in, [.} 31,[43.

Let Idenote the permutation matrix

6



0 (12

The dimension of I will be always clear from the context. Also, for any

vector v we denote

v-iv, (13)

Fi.e., v is obtained from v by reversing the order of the components of the

vector. Note the following property of the matrices R and S
n n,k

I Rn I R n  ISn,k I Sn, k  (14)

Let us partition the matrix R in two ways, as follows

r0  gn I n o n

R.. 1 n n I

, Using the well known partitioned matrix inversion formula [5, pp. ],we get

] - T "]n 0 R;1J n n 0 L0 nj +;in in,(6

where

7



n= r - T R- 1  
-T n- (17nnn-lI = r"-n Rn-._On (7

Consider now the (k,L)-th element of the Fisher information matrix J (0)n+1

corresponding to the n+j measurements YoY" 'n } 'Using (6) and (16),

we can expand this element as follows:

rR- 1S ,R- ISn}  T R- 1
ntr{~ nn, + - n k n ,

=Jn ( -]k, =

7 tr{ Sn k

r0  1 SnR = 17

0 R I1n~ R- 1 "~

0 0

TT

Z~nl~ n 3 In 'i ~ 1 n

n-n+1

1 -1 -1 T -1
+i )k6n 0 . trR1 Sn,k 2n n} Sn , n

n.%"

1..

+ 1 tr Tn 'En in Sn,k 2s .n in n,t 1



II
- ,,,

•P 0,.-

00

I T 0 0 - T

= k + S; Snk L0 R-j Sn n Skn

1 -2 T - T 
(-1 T -T

T n Skn n nz 2n 6n nk 2 4

-'()1 T -1 1 -2 T T
.. V 'jn~e) 3k,z. 6n Sn Sn~k R n SnL in T &.n S Snk 2n SnSn,~

+ -1T (18)
n 4,n~ Sn Y- (1)z

Let us introduce following auxiliary variables.

(19a)2n,k S n,k -n

; "- I s n  I  ( ) "r

aR~ -1 S (19b)
-n,k n n,k 2n n " ,k

T T
f = , n Snk in 2 n .LD.,k ' (19c)

(19d)
, >~

~~~gn,k A n 2n,k'(9d"

9
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Substiituting in (101) we get the desired update formula for J (s):(a)

-1T1 2
n+1I kUz n k~l nDlk Inz .t n n,k n~ ~n gn,kgnfl

(20)

To use this formula in a recursive algorithm, we need updating recursions for

-, n' -nk -3 k-nd .The variables a and 6 can be update using the

Levinson-Durbin recursions.

[2O - cn (21

6n 6n-I( - c) 2 (22)

where c is the n-th order partial correlation (also called reflection

* coefficient)

n 6 n- 1AT *(23)

Using (22) in (19a), we get the following update formula for nflk

Sn- n1
2ln,k Snk Zn = n~ n cn k 

00

j 0j



FrD:i-,k] - dn,k 2(4
L n4,

where

d Tdn,k - n-1 -Zn,k (25)

Similarly we get for
-n,k

ri~ R~.~rk 1,k cnk

1

R0 0 d 1l~F -T
6n 2n nI

A. 4 -1 T k

Ft 0 1 n 0nn -1

L0in-, cnl J en~k fl Li-nn (26)

-~n .4*1



where

e n = SL d (27)
nn~k

To summarize, the algorithm consists of formulas (23), (25), (22), (21), (27),

(24), (26), (19c), (19d) and (18) in the given order. For convenience, we

have included a summary of the algorithm in appendix B, in a form readily

adaptable for programming. The total operation count for one update is

n(M2 + 6M + 4) + (M2 + 24 + 1) multiply/divide operations, and

n4 2 + 6 M + +(31 2+ 6 M + 3) add/subtract operations. Thus, the total

operation count for computing 4Jn(), 1 < n -c N} is 1(M2 + 6 M + 4)N2

+ 3M2 + 10 M + 6N multiply/divide oeprations, and 7 (M2 + 6 M * 4)N 2

+ (2 + 18 M + IO)N add/subtract operations. This does not include the

computation of (rn, Sn,k mn, U n,k which depends on the specific

parametric model.

N:

12
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3. RATIONAL PARAMETRIC TIME SERIES

Sin this section we present an algorithm for computing the covariances of

rational parametric models, and their partial derivatives. We consider the

following general rational model:

Yt =zt + vt (28)

where (vt} is white Gaussian noise with zero mean and variance a2 andt v ,

Z is a (p,q) ARMA process,

- akz +u + bu (29)ztk Zt-k k ! bk t-k'

where {ut} is white Gaussian noise with zero mean and variance 2 . The

random processes {ut) and {vt} are assumed to be uncorrelated. The parameter

vector is

a Co2 a1,.. p, b bl 2T ; M = p + q + 2 • (30)

The model defined by (28), (29) includes many common rational mocels as

special cases. The case 0, q = 0 corresponds to a pure AR process,

40 while the case 02 * 0, q -0 corresponds to an AIR processes in additive

white noise. The case p 0, a 2 = 0 corresponds to a pure MA process, while
V

the case p 0 0, q s 0 corresponds to an ARMA process. Note that in general,

the additive noise vt is redundant whenever q > p , because then it can be

absorbed in z by a proper modification of the parameter (bk) I

The covariances of Cyt} can be computed as follows. Let us introduce

the auxiliary AR process

• ,11



wt  a w + U/a u  (31),t akw tu

Let {yn denote the covariance sequence of the process ,wt) The

first p+1 elements of this sequence can be obtained by solving the equations

(A +A2 )[p " YI' 1 OIT **O ... 0 13
T ,  (32)

where

a .... a a 2:', .p 0 .

Aa A F (33)

" 4 L L °i j. .. i

The higher order elements of the sequence {yn} can be computed using the

recursi on

a k'n-k ;n > p. (34)
k I

The covariances of (y are related to those of {wt} via

2 q; n=Or 2 b (35)
rn 0u i bjyln-i+jI +

r=0 = 0 0n + otherwise

The partial derivatives of the covariances can be similarly computed.

4..
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Differentiating (32) with respect to ak we get

(A +A2)f 'Yp (36I '] .
1_ 2 La k  7a k  [Yp-kI ... '" "'k (36)

By solving these equations for each i 4 k < p , we get

I . I k < p} (note that AI+A 2 needs to be inverted only,ak , aak 12

once). Differentiating (34) with respect to ak we get

7% -Yn P "Y n- i- a a Yn-k (37)

*k i=1 k

Finally,

ar 2q Ijn-i+j
"a n u : j - b l bib j  a (38a)

k ik0j-0

ayn 2 q
b (y1  k )i (38b)-; bk  u it0 i Jnk l n+k-il)

a yn ql q

=- 0 j70 bib.y (38c)
.2. i-0 jn 0

ayn I 1 ; n=0

Tv i 0 ; oterwise

Equations (32), (34), (35), (36), (37), (38) provide an algorithm for

computing the covariances and their partial derivatives for the ARMA plus

loise model.

' .
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4. ASYMPTOTIC BEHAVIOR OF THE ALGCRIT4!-

In this section we limit ourselves to time series with zero meanss.

Furthermore, we assume that (y.! has nonzero innovation variance a- By

Whittle's formula (7), the information matrix J (e) is asymptotically -,

n

proportional to n. We therefore exoect that the increment
-1 T 1 -2f
- 21 f nz appearing in the update formula (20) will' "n k -, "2" 6n n,k n,z

converge to a constant value as n goes to infinity. Indeed, recall that

2 = lim 5n = ro 1 (1-cf) (39)

"-a i=i.

Hence,

"2 log(i-c ) lo .4

Therefore,

lim c. - 0 . (dI)
n-. i-n+1 -

It is easy to show that due to (40) the variables , f n and

.1T converge to constant values as n Thus for large enough n,

-n(s) becomes approximately linear in n. This means that for some no , __

n (6) ( n (e) + (n-n 0) J() , n > no , (42)
n n~0 0

where 7(a) is a constant matrix. The approximate relationship (42) can be

used to terminate the information updating algorithm, in the following

manner. Suppose we can find some n0 such that

W "] °-
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C. <S<<1 (43)
i=n 0 +1

where is determined by the desired degree of accuracy. Then we can stop

the algorithm at n=n 0 , take Ta) as the last computed increment of

n( and extrapolate J n (a) for all n > no using (42). The problem is, of

course, to determine n0 so as to guarantee t43). One way of doing this is to

compute a moving sum of squared partial correlations, say

w,-.',n 2 (
"K = c (4 )n .- n

where n1 , is fixed. Then we can choose no as the first value of n for

which K < e . if the sequence {c n is sufficiently regular, this criterion
nhi n

is a reasonable approximation of (43).

For ARMA processes, the value of n0 can be determined by the ARMP.

parameters, and there is no need to actually test the partial conrrelations.

In fact, a consecutive estimate of n0 is provided by the following lemma.

Lemma:

Let ab(z)/a(z) be the transfer function of a (p,q) ARMA process, and

assume that all the roots of b(z), k k q} , are inside the unit

circle. Let n, be an integer such that

q 1
: Iak l nl < 7 £ ' (45)'"k

and let

n p + q(n1-1) (46)(66
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Then

c2<C

i~n +10£

p. PrOof:

Let n (Z be the n-th order Levinson-Szego polynomial of the given

process (i.e., the polynomial whose coefficients are the components of

a n) -As is well known, n (z) minimizes the prediction error variance among

all polynomials of degree n, and the minimum prediction error variance is

6 n Therefore,

n- 1 I s n(eaw)cb(eJW 2 1 f (eJw)cb(ej') 2
n - .a(e da j (eJw ,

for any n-th degree polynomial x(z) . Let us deinfe the following

polynomial:

x0z *. q n- -(n-1x0(z) k a(z) 13 ... + sk . (48)k-l

By (46), the degree of xz) is n . Hence by (47),

w. C (e )be )1 2 q jn 1
--~~dw -xI ~ j ) - 2- f n (1-(ek e 'j ')-

2 f a(ejw) 2 -,r k-1

, sup 2 (l-(ake ''  2 L (+IBk 2 (49)
k-1 I kul

Hence, by (45), i

18
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log 7 2log(il l In ) 4 2 " < - %
kk=1

Finally,

Ca 6n

e log(1-c og < og. (51)

RJ=n0 41 in0+1

in summary, any no that satisfies (45), (46) can be used as a termination

point for the algorithm. Note that n0 is essentially determined by the

zero(es) using the largest magnitude. The denominator polynomial has little

effect on no , except when p >> q or when all the zeroes of b(z) have small

magnitudes. For pure AR processes, c. = 0 for all i > p. The relationship

(42) then holds exactly for n0 = p+1 . This fact was also proven in [61

using different arguments. For ARMA processes having zeroes near the unit

circle, partial correlations may converge to zero very slowly. Therefore, for t

such processes, the Fisher information matrix reaches itsasymptotic

approximation (7) only at very large values of n.

19
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5. U ERICAL EXAIMPLES

In this section we illustrate the behavior of the Fisher information

matrix of AMMA prccesses by some examples. Rather than considering the

information matrix itself, we consider the following quantities:

(i) The diagonal elements of Jn1 (a) ; these are the Cramer-Rao bounds on

the respective components of the parameter vector a

(ii) The Cramer-Rao bound for unbiased estimates of the logarithm of the

spectral density. this is giver by C7]

CR9{logo(w)) D W)J4 (')D() (52)

where

DT(W) = T[L - " .,(53) &

Example -4:

In this example we consider an APMA processof order (2,2), with a pair of

conjugate poles and a pair of conjugate zeroes. Both the poles and the zeroes

have magnitudes (0.95)/2 , and the phase angles are .45° for the poles and

*135 ° for the zeroes. The APMA transfer function is I

b(z) 1+I.378z-1+o.95z 2  (-)

a-T : 1-1.378z-4+0.95z-2

Figure la shows the CRB's of the parameters al, a2, bi, b2 as a functicn of

n. The CRB's are in d3 and the n axis is in log scale, so that te as*Yrmot)tic

_
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approximations appear as straight lines. As can be seen, the discrepancy

between the exact bounds and the asymptotic approximations is very large when

the number of data points is small, especially for the numerator parameters.

V, Only at about n - 500 do the exact bounds converge to their asymptotic

approximations. Figures lb and 1c show the exact and asymptotic bounds on the

log spectrum (*1 standard deviation) for 50 data points. As can be seen, the

behavior of the bound in the vicinity of the pole is similar In both

figures. However, its behavior in the vicinity of the zero is considerably

different: the asymptotic approximation is far too optimistic.

Example i2:

This example is similar to the previous one, except that the poles were

moved to phase angles of *700 and the zeroes were moved to phase angles of

*1100. The corresponding transfer function is

b(z) . l+O.667zl+O.95 2  (55)
a(z) 1.0.667z-L+0.95z "  "

Figure 2a shows the bounds on the parameters, Figure 2b shows the exact bounds

on the spectrum, and Figure 2c depicts the approximate bounds on the

spectrum. Note the difference in the bound of compared to the previous

example.

Example 3:

Here we moved the pole and the zero even closer to each other. The poles

have phase angles of t85 ° and the zeroes have phase angles of t95 ° . The

corresponding transfer function is

21



b(z) 1i0.17z'-'0.95z"2  (56)
aITI 1-0.17z+o.95z.

The bounds are shown in Figures 3a, 3b, 3c. Note the dramatic change in

the bounds of a and a2 compared to the previous examples, for small values .;

of n. '

Example #4,:

For this and the subsequent examples the model was a sum of two

uncorrelated narrowband processes and white noise. Such a process has a

spectral density function
*1 2 J -.

2 Ei[(1-p i) - (1-Pi )Pcos2 irfi(e J e '"2

il1 1+4p'cos22rf. 4 _ 2picoS2,0fi(l+p i  ... 2 ', + v"

S( 57) I

In this example we chose p, p2 0.99, f, = 0.2H2 ' f2 " 0.225 Hz,

2S=2 , 2 . Thus, the SIR is -3dB for each of the two narrowband

processes. The equivalent ARMA description of this process is

ab(z) . 1.5856(1-0.8706z' 1+1.9194z' 2-0.7610z' 3+0.7641z 4) (58)a =z) 1-0.9217z +2.1502z -0.9036z +0.9606z "  (58)

The number of data points was chosen to be n=50. Figures 4a and 4b show the

exact and the approximate bounds on the spectrum. Note that the peaks of the

lower bound are lower than the dip of the upper bounds. This means that with

high probability the two narrowband processes cannot be resolved by any

unbiased estimator of the spectrum. This phenomenon cannot be predicted by

the asymptotic approximation, but only by the exact bound.

22
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Example z5:

This example is similar to the previous one, except that the white noise

variance was increased to 4 (i.e., the SNR is -6 dB). The eouivalent ARMA

description of this process is

a b(z) 2.1630(1-0.8863z'I + 1.9883z'2 "0.8032z'3+.8212z' 4 ) (59)
a'(z = 1-0.9217z- +2.1502z-z.0.9306z- +O.9606z-4

The exact and approximate spectral bounds are shown in Figures Sa and 5b, for

n=50. As we see, the peaks of the lower bounds are much below the dip of the

upper bound, is that the two processes are not likely to be resolved at all.

Example 46:

This example is similar to the two previous ones, except that a = 8
v

i.e., the SNR is -9 dB. The equivalent AMMA description of this process is

ab(z) = 2.9798(1-O.8979z-1+2.0O407z'2-0.8353z 3+O.8655z " ) (60)
atz) 1-0.9217z'I+2.1502zZ.-O.9036z'.+0.9606z

Figures 6a and 6b show the exact and the asymptotic spectral bounds. Here

even the asymptotic approximation indicates that the two processes cannot be

resolved. However, the exact bound indicates that with high probability none

of processes can be detected.

Example 47:

This example is similar to example #4, except that f was changed to
2

0.2125 Hz. The equivalent ARMA description of this process is

ab(z) 1.5723(1-1.0192z'+2.0215z 2-0.8985z 3 +0.7771z 4)

1-1.0738z" + 2.2438z - -1.05292 -+0.9605z 4

23
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Figures 7a and 7b show the exact and the asymptotic spectral bounds. The two

narrcwband processes are evidently indistinguishable, but the approximate

bound fails to indicate this.

Example 48:

rhis example is similar to examples 44 and #7, except that f 2was

changed to 0.25 Hz. The equivalent ARMA description of this process is

Ob(z) .1.5943(1-.5763z 1+1.7395Z-2-0.5011Z-3+0.7558- 4) 762

* ~ 1-0.5119Z 1 +1.9603z'-0.5997z +0.9606z

Figures 3a and Sb show the exact and the asymptotic spectral bounds. Now the

two frequencies are sufficiently 'For apart, so that the two bounds are similar

and both indicate that the two can be easily resolved.

24
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. OISCUSSICN

We presented an algorithm for computing the exact Fisher information

matrix of parametric Gaussian time series whose random components are

stationary. The algorithm is computationally efficient, requirina a nunoer of

operations proportional to .42 for computing the matrices

IJn(), 1 4 n 4 ?} . The Cramer-Rao bound for unbiased estimates of tt,=

parameters is simply the inverse of the information matrix.

The algorithm was specialized to the case of AMMA processes with additive

white noise, and closed form exoressions were derived for the covariances and

their partial derivatives. Some common nonstationary time series can be

similarly handled, such as sums of sinusoids in white or colored noise,

rational impulse responses in white or colored noise, etc.

Examination of the exact information matrix of ARMA processes reveals an

interesting fact. As is well known, the asymptotic information matrix of ARMA

processes is symmetric in the numerator and denominator parameters. in other

words, interchanging the numerator and the denominator polynomials leaves the

information matrix unchanged, except for row and column permutations

[1, pp. 2401. However, the exact information matrix does not share this

symmetry property. See for example the difference between the denominator and

the numerator parameters in Figure la, when the number of data is small. This

5 observation offers a partial explanation to the well known fact that with a

small number of data points it is much more difficult to accurately estimate

zeroes than poles.

We finally note that the Cramer-Pao bound for short data records is not

1% necessarily tight, i.e., efficient ALMA algorithms may not exist. However,

the CRB still provides a lower bound on the performance of any given

algorithm. We should stress that the bound applies to unbiased estimates

25
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only. While there is no evidence that there exist unbiased ARMA estimation

methods,. most existing algorithms are designated to te approximately

unbiased. Fcr such algorithms, the inverse of the information matrix offers a

reasonaole measure of achievable performance.

.
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APPENDIX A: PROOF OF THE [NF4RATION 'MATRIX FORMULA

The algorithm of the joint density function f(y) given in (2) is

log f(y) .log log det R( ty.m ) (e)[y.m(af(A.1)I

Differentiation with respect to ak yields

:! ~ ~~~;Iogf~y) it{-() () ~ ~( R

, Rk - W a-(3) + 1(-- TR'1(j) R" (s)[y-m(W1]

r Z~-~i .1T -1

* L 4"8 J R(A 2 11

Multiplying ;logf(y)/33 k by ;logf(y)/;i and taking expected value yields

! tr{R-l( );R(e), - R1R()W, + -1

+ j.-M () TR- I }( )Cy-(a)J R )!Y-m(6)RT-'L(a )ILL R-1 (e)[y-m(e)]}.
iE as k aa

(A.3)
To evaluate the last term let us denote

x y - m() ;A =R- ae ) R (e) ; R-(a) i2 R-'(3) (A.4)

Then

E x 8Ax xT B x = E. XiAIjXjmnX} AjB Ejx xxx }
1,3 ,m,n i ,j ,m,n rn m n

A i A.Bmn (Rij Rmn + RR Rin.Rj)

Rij . ( Z 8 R A R ;n n i Aij jmB Rn .
ij i3 m n n mn im in ijn,n

iii i ,j,m~n • A mn, nB R

" tr(AR} • tr(3R} + 2tr(ARBR} +"

- tr{R- R(e).e- tr{R'()

"- , "- ' ", ". - - > "- , ," = " " ' " ' " ' " ' " . , " '- ", T, ." .; ," ." -" ,' .; ,'.' " " ' - " ' '" . '. ', ', " '/ ." ." . " " ' " ' " ' " " ' " . " .



Substituting (A.5) into A.3) we finally get

- J -k~r0a arl.. . . ..

(A.6)

[i2

I,

4, %
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APPENDIX B: SNMARY OF THE ALGORITH

Inputs:

N: number of data points

ro, ...,rN : covariances of the given process

{s S 1 4 k c M}: partial derivatives of the covariances

U I k c Mj: partial derivatives of the mean vector

Initialization:

I n = 0 n=l,* . -

6 = r0 ;

Ok SOk

.' . =S O  /r0  k•
10,k Q,k ,

* I 1 /r2 p
JS,k, ,SO~J/r , k, : 1,...,M;

Do for n=1,. .,-1

n-1

%>' c 7 a r. ~ M1=0
n-1

' 'i= 0 1 n-i,k k " M

( 2)

A.',k
nn = dk ,k=1,.. .,
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Zn
ek 2.o nj,k an-i

i 'i~k - "'ni~r~I k0**,

i,k i

t i i,k - c'nik e ek(n-ilcaj)/6 i 0 ,...,n;

i~k =

f OL ir., 1..,

nn

'n+l,k,z = nkz + ri~O ik~i,~ Y k2 , k, kg

Comments:

(1) The vector a , n, , k and the scalar 6 are overwritten at each step

Ii by the new values. This helps keeps storage requirements

proportional to N, rather than f12. The temporary storage vector

t is used in updating the vectors 1, ~

(ii) The Fisher information matrix is not overwritten at each step;
however, 7the algorithm can' be easily modified by letting the new

value of Aoverwrite the old value.

(iii) The update of 4 is split into two steps. First d kis added to the
k

(27)). Then the updating of .kis com~pleted.
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FIGURE CAPTIONS A

Figure 1: Example I-- a) The asymptotic and exact Cramer-Rao bounds for
the ARMA parameter estimates, b) the exact Cramer-Rao bound for
the spectrum, c) the asymptotic Cramer-Rao bound for the log

spectrum

Figure 2: Example 2-- a) The asymptotic and exact Cramer-Rao bounds for

the ARMA parameter estimates, b) the exact Cramer-Rao bound for

the spectrum, c) the asymptotic Cramer-Rao bound for the log

spectrum

Figure 3: Example 3-- a) The asymptotic and exact Cramer-Rao bounds for

the ARMA parameter estimates, b) the exact Cramer-Rao bound for
the spectrum, c) the asymptotic Cramer-Rao bound for the log

spectrum

Figure 4: Example 4-- a) the exact Cramer Rao bound for the log spectrum,

b) the asymptotic Cramer-Rao bound for the log spectrum

Figure 5: Example 5-- a) the exact Cramer Rao bound for the log spectrum,

b) the asymptotic Cramer-Rao bound for the log spectrum

Figure 6: Example 6-- a) the exact Cramer Rao bound for the log spectrum,

b) the asymptotic Cramer-Rao bound for the log spectrum

Figure 7: Example 7-- a) the exact Cramer Rao bound for the log spectrum,

b) the asymptotic Cramer-Rao bound for the log spectrum

Figure 8: Example 8-- a) the exact Cramer Rao bound for the log spectrum,

b) the asymptotic Cramer-Rao bound for the log spectrum
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MULTICHANNEL ARMA SPECTRAL ESTIMATION BY THE MODIFIED YULE-WALKER METHOD
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1801 Page Mill Road Technion, Israel Institute of
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Haifa 32000, Israel

ABSTRACT

This paper proposes an algorithm for estimating the power spectra of

.- multichannel wide-sense stationary processes. The processes are modeled as

the output of a multivariable linear system driven by white noise. The

transfer function of the system is given by a numerator matrix of polynomials

divided by a scalar denominator polynomial. The denominator polynomial is

estimated first, using the overdetermined, order over-estimated, modified

Yule-Walker method. Modal decomposition is used to eliminate superfluous

modes to reduce the order of the transfer function. Finally, the numerator of

the spectral density matrix is estimated.

U
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1. INTRODUCTION

Parametric models are widely used in the statistical analysis of scalar

time series. In particular, autoregressive (AR) and autoregressive moving-

averge (ARMA) modeling has proven to be very successful in many applications

[11,[21. Many problems of practical interest involve vector processes. As

examples we mention signals in an acoustic and seismic arrays. It often

happens in such applications that important information is present in the

cospectra of the various channels (rather than in the autospectra). In such

applications it is necessary to perform multichannel processing in order to

extract the desired information.

Traditional multichannel time series analysis is based on the use of

periodograms and windowed periodograms [3]. Multichannel maximum entropy

spectral analysis has also gained some popularity in recent years [4].

Parametric modeling for multichannel time series was discussed by several

authors [31,[53,[61. Usually, the multichannel ARMA model, which is a special

case of left matrix fraction description [7), is used in these discussions.

The main problem in using parametric models for multichannel time series

.is their high dimensionality. The number of free parameters is generally

proportional to the square of the number of channels. Note that even a

relatively simple problem involving a two-channel ARAA model of order (2,2)

has 20 free parameters. Simultaneous estimation of so many parameters using a

maximum likelihood method is difficult. Problems such as obtaining initial

conditions, searching among multiple local minima and selecting the

appropriate order are extremely difficult to handle.

In this paper we propose a parametric spectral estimation algorithm which

is aimed at circumventing some of the practical difficulties encountered in

maximum likelihood estimation. The algorithm uses the sample covariances

2
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(rather than the data directly), and is an extension of the scalar modified

Yule-Walker (MYW) method with modal decomposition, reported in [83. The

proposed technique is non-iterative and for the most part requires the

solution of sets of linear equations. The parameters of the denominator and

numerator of the spectral density matrix are estimated in two separate

steps. This alleviates somewhat the problem of high dimensionality.

While the proposed estimation procedure is not asymptotically efficient,

it appears to be more robust and considerably less complex (in terms of

computational requirements) than the maximum likelihood estimator. The MYW

based approach seems, therefore, better suited for practical spectral analysis

problems than the maximum likelihood approach. The facts that initial

conditions are not required and that the computations consist largely of

linear least-squares fits, makes the proposed approach especially attractive.

The outline of the paper is as follows. In section 2 we present the

model to be used, and introduce some basic notations. In section 3 we give a

detailed description of the algorithm. In section 4 we illustrate the

performance of the algorithm by some simulation examples. Section 5 discusses

the main advantages and drawbacks of the proposed technique, and suggests some

possible modifications.

3
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2. THE MODEL

Let {y } be a p-dimensional zero-mean wide-sense stationary process. We

assume that (yt} is related to some p-dimesnional white noise process

{wt} by a rational pxp transfer matrix H(z), i.e.

y(z) = H(z)w(z), (1)

where y(z) and w(z) are the formal z-transforms of (yt} and {wt} . The

transfer matrix H(z) is assumed to be stable and causal. The covariance

matrix of wt can be assumed, without loss of generality, to be the identify

matrix (since this covariance matrix can always be absorbed in H(z).

The model (1) includes many common parametric models as special cases.

For example, the AI'A model

y(z) = AJ(Z)BL (z)w(z) , (2)

is clearly of the form (1). In this case H(z) is written in the form of a

left matrix fraction description (MFD). The AR plus noise model 7

x(z) = A 1 (z)u(z) (3a)

y(z) = x(z) + v(z) , (3b)

where {ut} and {vt} are uncorrelated white noise sequences, can also be

transformed to the form (1). In some applications, the natural description of

the process is in terms of a right MFD,

| -A

4
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y(z) = BR(z)A1(z) w(z) , (4)

i
see e.g. [9) for such an application.

The main difficulty in using the models (2), (3) or (4) for spectral

estimation lies in the fact that the denominators of these models are

polynomial matrices. Therefore, the modes of the spectrum do not appear

explicitly, but are "hidden" in the determinant of the corresponding matrix

polynomial (AL (z) or AR(Z)) . An alternative model, which makes it easier to

display the spectral modes, is given by

H(z) =B(z- ) (5)
a(z-I

where a(z" ) is the least common multiple of the denominators of the entries

of H(z), expressed in oowers of z-I . The matrix polynomial B(z1) is also

expressed in powers of z1 . In general, a(z" ) and B(z" ) of the same

degree,

a(z"1 ) = + z + ... + anz 'n  (6a)

B(z"I) = 0 + + ... + 8nzn. (6b)

We note that while the model (5) is quite general, it is usually

overparametrized. For example, let us compare the number of parameters in (5)

to the number of parameters in the Ai4A model (2). A p-dimensional AW4A(m,m)

model has (2m+l)p2 free parameters. The corresponding characteristic

polynomial has degree nump, so that in (5) we have mp+(mp+l)p 2  N
parameters. For p = 2 we have 8m+4 and lOm+4 parameters, respectively. Thus,

5 1
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for two-channel time series, the model (5) is only slightly overparametrized.

Let S(z) be the spectral density matrix of the process {yt This

matrix is given by

S(z) = 1 Blz--)Br(z) - N(z) , (7)
a(z" )a(z) a(z" )a(z)

where

N(z) = B(z'l)BT(z) = N_nz ... + Nn z-n (8)

Next we write S(z) in terms of the covariance sequence (Ri} ,

R= E ytYT I = RT < <(27 ~~t t- -i'" < i< .()

Let L

Y+zI  - RO + R Riz'  (10) "

is'

be the causal part of the spectrum. Clearly,

S(z) - S+(z "1) + ST(z) (11)

.4.

The causal part can be expressed as

S+(z) - 1  C(z- 1 ) , (12)
a(z"

6

1A



where

C(Z-1) C C0 + C IZ-1 + *.+ CnZ (13)

From (7),(11) and (12) we see that N(z), C(z-1) and a(z-1) are related by

N(Z) =C(r
1l)a(z) + CTz)a(z-1) .(14)

As we will see in the next section, the parameters of the matrix

C~-)can be estimated by a relatively simple procedure.

tk
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3. THE ALGORITHM

The proposed algorithm is based on estimating the coefficients of the

rational spectral density matrix from the sample covariances. These are

computed from the measured data by

T T
wher K(T,) th i

Each sample covariance Ri is a pxp matrix. We also define for each i a

p2-dimensional column vector Pi obtained by stacking the columns of '

i.e.,

pi= [R 1 1'1)" "'Ri(P'1I" "'R 1 (1,p),..,R 1 (p,p)]T (16)

Note that any estimation algorithm based on sample covariances will not be

efficient In the statistical sense, i.e., it will not achieve the Cramer-Rao

lower bound, even asymptotically* [103. However, by increasing the number of

sample covarlances used in the algorithm the loss of efficiency can be made

quite small [11). Furthermore, spectral estimation algorithms based on sample

covariances are known to be more robust than algorithms of the maximum

likelihood type (i.e., they are less sensitive to initial conditions, model

inaccuracy, or the choice of the number of parameters).

The algorithm consists of three steps. In the first step, an initial

estimate of the characteristic polynomial is obtained by a multichannel

version of the modified Yule-Walker equations. This initial estimate has a

wExcept in tne special case of pure autoregressive processes.

8
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high degree in general, compared to the degree of the true characteristic

polynomial. Thus, at the second step, the degree of the initial estimate is

reduced to yield the final estimate of the characteristic polynomial. This is

done using modal decomposition of the causal part of the spectrum and an

appropriate elimination process. Finally, in the third step, the numerator

matrices are estimated by a least squares technique, using the estimates of

the characteristic polynomial from the second step.

The three steps of the algorithm will now be described in greater detail.

3.1 INITIAL ESTIMATION OF THE CHARACTERISTIC POLYN(MIAL

The covariances of the process {Ri} can be easily shown to satisfy the

Yule-Walker type equations

n
ak'i- k  -R. ; i n+1. (17)

Substituting the sample covariances for the true covariances in (17) we get

the so-called modified Yule-Walker equations

nZ akRt.k "Ri ; + , (18)

or equivalently,

n

akplk " l ; I 7 n+.1 (19)k!1 kl i P

It was demonstrated experimentally in [121, and proven mathematically in [131,

that by taking an overdetermined set of equations of the form (19) and solving

them in the least-squares sense, the statistical efficiency of the estimated

4, 9
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characteristic polynomial coefficients can be improved, compared to the case

where only the minimal number of equations is used. Thus, in practice we

solve the following set of equations in the least-squares sense:

n2 P...... 2 pn+l -

A a 2 A
-- * a J "2 (20)

G z Pn2 +1 ..... P3 P2 "n +2 •

- a

4 . .-

Pnl+n 2-  ..... Pn +1 Pn Pn +n

2 n
The number of equations in (20) is pn, and the number of unknowns is

n2 * It was shown in [8), [14] that, if n2 is taken as the true degree of

the process characteristic polynomial, the estimates (al, ... may be

considerably biased in some cases. This can be intuitively explained as

follows: Equation (20) has the form of a least-squares autoregressive fit of

the "data" (pl' p2.....} . It is well known that the estimates

{a, "" anI are unbiased only when the error between the two sides of (20)

is a white noise. However, for general rational models, the sequencea a
1' P "'" } does not follow an exact autoregression, and the error will

not be white. By taking a sufficiently large order n2 in (20), we can

approximately "whiten" the error sequence. Based on this intuitive argument,

the use of Akaike's information criterion was advocated in [8] to determine

the value of n2 . Here we follow the same choice, but mention that other

choices have been proposed, e.g. [15),[163.

The number of equations in (20) is usually selected by some ad-hoc

10
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procedure. However, pn >> n2 is often necessary to guarantee a reasonable

statistical efficiency, see e.g. [121,[131. We have adopted a constant ratio

between p2 n1 and n2 for convenience. Thus, equation (20) is solved for

different values of n 2 , where p2 n is always taken to be fixed multiple of

n2 * For each solution, the Akaike information criterion [171 is computed,

and the final choice of n2 is made by minimizing this criterion.

3.2 ORDER REDUCTION BY MODAL DECOMPOSITION

Let us denote the n -th order polynomial obtained from the modified
.2

Yule-Walker equations by a(z1) . As explained before, the degree of

a(z"1) is usually much larger than the true degree of the characteristic

polynomial. Furthermore, it was shown in [83 that a final estimate of the

characteristic polynomial can be chosen to be a divisor of i(z"1) . This

divisor is obtained by the following process of decomposition and elimination.

Let us factor i(z"1 ) into its first- and second-order real factors:

nr  n c

(z- 1 ) a n di(z' 1 ))( nc eiz') , (21)
1=1 imi

where n r is the number of real roots and n is the number of complex pairs

of roots, so that n2 = nr + 2nc . The polynomials (dt(z'1)} are of degree

1, and the polynomials {e1 (z' )} are of degree 2, i.e.,

d1 (z 1 ) = 1 + d iz 1  , (22a)

e (z') a 1 + e1 1z 1 + e2 1z' . (22b)

Since a(z " ) is not guaranteed to be stable, it is necessary to replace it by

11



a stable spectral factor of i(z1I)i(z) . This is done by reflecting the -..

unstable roots of a(z) inside the unit circle, as follows: whenever

Id1 ,1l> 1 we redefine dt(z) as

d 1(z +)  1 I + z"1 (23a)

Similarly, whenever le2 ,i > 1, we redefine ei(z) as

1el 11  -1 1 -2
el(z l) = 1 + --.e L'i z __i-2 . (23b) .4

e2,j e2,1

Assuming that all the roots of g(z"1 ) are distinct, we can use (10) to make

the following approximation,

n3z . nr 1'e + z E'iz1 E2 'jz'2 "* " ) (24)z"I jt +d Z_'jl +e Z. I+e2,jzZ lz,

where If(z) is the z-transform of a rectangular window on the interval [1,n 3),

and * denotes a complex convolution. The number of covariances n3 is chosen

so that n3 >> n 2

The expansion (24) will be used to select modes that will appear in the

final estimated characteristic polynomial, and to eliminate undesired modes. :"

To do this we estimate {DI and {E, j , E2 ,} by performing the following

least-squares fit in (24): let us denote

1 = fij z'  (25a)
• dj (z'l 5~ ''0

d -Z 1;

g, 'JZ -I (25b)

e (z " ) i=*

12
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Then we can express (24) in the time domain as

S EF GI Pi=

L0i ~ (26a)
AT
Pn 3 j

where

Fi'~ (26b)

f - g n3 ,n r

gol 0 1 .gl .. 9,n 0
Cc

G (26c)

9~ 1  
9 

3 2,1 . . . g (do by hand)
L n-, n3 31n 3 -, j6

1,1 C1,1
T T
81,2 F £2,1(2d

TT
61,nr c2,n

The vectors 61jare obtained by stacking the columns of 1jthe vectors

dr% by stacking the columns Of Ejj , and the vectors ,,j by stacking the
01.
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columns of E2, (cf. equation (16)). Equation (26a) is now solved in the

least-squares sense and the solutions are "unstacked" to yield

(D , } and (E E . Q

The next step is to compute the energies of the individual modes in the

various channels. It is not difficult to show that these energies are given

by the following formulas.

.4w

[(D1I  ,z2

Energy of j-th real mode in channel #4 a ,J) , (27a) '.
1 - d ,

Energy of j-th complex mode in channel #1 =

i ~~ ~~ ~ ~~~ (le,){(Ij)j~ +[ (E,) 3~i2 -ej(lj) ,][Ej j]

e ( . (27b)( 1-e2 ,j ) M+e 2 1,j+e 1,J ) { l+e 2 , j -e, ,j7-

Typically, the true modes (i.e.. those present in the actual spectrum) will
5.,

tend to have relatively high energies, while spurious modes will have

relatively low energies. We therefore arrange the (n +n c)p energies in order

of decreasing magnitudes, and associate each energy with its "parent mode".

The mode selection process can now be done, using either of the two following

criteria:

(I) Energy threshold criterion.

In this case all modes whose energies are above a certain threshold

are retained, and the other modes are discarded. It is convenient to

measure all the energies in dB relative to the highest energy, and

then a reasonable threshold would be, e.g., -50 dB.

14i
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(ii) Order criterion.

In this case a pre-selected number of modes (corresponding to the

highest energies) is retained, and the rest are deleted. This is

convenient in cases where the true order of a(z- 1) is known a

priori.

Finally, all modes chosen to be retained are multiplied out to form the final

estimated characteristic polynommial i(z"1 ) . Clearly, a(z"1 ) is a divisor

of (z-1 ). Also, the mode selection procedure described above guarantees

that these modes capture most of the signal energy, in the sense of the

approximation (24).

3.3 ESTIMATION OF THE NLMERATOR

Numerator estimation is based on the additive decomposition (11),(12).

Similarly to (24), we can approximate 9+(z - I) by

n
1 14-

- Ro +)} * ri(z) , (28)
=;(Z

where n(z) is now the z-transform of a rectangular window on the interval

[0, n4). The number n4 can be taken to be much smaller than n3, because the

order of a(z" ) is usually much smaller than that of a(z" ) Let us

denote,
I.

h1" - . (29)

i5



Then we can rewrite (28) as

hAT 1 -Th0  0 YT "-

1Y P i

h; ....... h

(30)

h hE ^T
n4 n....... hn4- n Pn4

where the vectors are obtained by stacking the columns of .

Equation (30) is solved in the least-squres sense, and the solutions are

"unstacked" to form (Yi. Finally, the numerator of the spectral density

matrix is computed by

.,1

N(Z) = 6(z- 1 )(z) + ^T (zYa(Zl)1 (31)

The estimated numerator 9(z) and denominator a(z-1) can be inserted into

equation (7) to provide the desired spectral estimate.
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4. SIMULATION EXAMPLES

The algorithm described in the previous section was programmed and tested

for various types of two-channel processes. Here we illustrate the

performance of the algorithm by three examples. Ii all examples the number of

data points was T = 1024, and n1 = 20, n2 = 16, n3 = 16, n4 = B.

Example #1:

Here we generated the data by a right MFD BR(z)AjI(z) , where

-l.4 + O.z 2 +009. 21
" ~R(Z O.03zl + 0"6z'2 1+0"6z-l+o'g5z" (2a

1 + 0.3z "I  + 0.4z 2  0.Sz "I  + 0.3z -2

BR(z) 2  (32b)-" 0 1 + 0.6z "2  _

Figure la shows the autospectra S11( ) and $22(w) , and the co-spectrum

S 21 (w) (magnitude and phase) of this model. Figure lb shows the

corresponding estimates obtained by the algorithm. As we see, the estimates

match fairly closely the true spectra, except at fr.equencies where the energy

density is very low. This is not surprising, since any estimation based on

least-squares fit would give little weight to low energy regions.

17
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Exampl e #2:

Here we generated data according to the model

yl(t) /Z sin 2nflt + I /2 sin 2,tf2(t-D) + nl(t) , (33a)

v~t) 2' 1ft

y2 (t) = /Z* sin 2nf2 t + n (t) (33b)

where nl(t), n2 (t) are uncorrelated zero-mean white-noise sequences, with
1

unit variance. The frequencies fl, f were 0.12 Hz and 0.18 Hz
1'2

respectively. The time-delay D is 2 seconds.

The estimated autospectra and co-spectrum are shown in Figure 2. Note

that both sinusoids are well represented in S () . Also note the slight
11

"leakage" of the first sinusoid into the second channel. In the next section

we comment on how such "leakage" can be avoided.

Example #3:

Here we generated the data by the left MFD A.1(z)BL(z) , where

S- z- + 0.8z 2  z

AL(z) = + + (34a)

1 + 0.2z "  -0.3z - O.z

(z) (34b)B()L0.4 + O.lz "1  1 + 0.3z "1 "-

1
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The characterisltc polynomial in this example has two narrowband modes with

I relatively closed frequencies, as shown In the ture spectra in Figure 3a.

Also, both channels have relatively low energies at the high frequency band.

As we see in Figure 3b, the estimates are fairly accurate in the low frequency

band, but quite inaccurate in the high frequency band. Evidently, the

algorithm has problems in adequately representing the frequencies where the

energy density is low.

Numerous other tests not shown here indicated a similar behavior: good
1*

accuracy at high energy regions, poor accuracy at low energy regions, and some ,.

"leakage" of energy from one channel to the other.

B19
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5. DISCUSSION

We presented a spectral estimation algorithm for multichannel stationary

time series with rational spectra. The proposed algorithm is non-iterative

and requires mostly the solution of linear sets of equations, except for the

factorization of the estimated characteristic polynomial. The algorithm is E

fairly robust in the sense that

(i) No initial conditions are necessary;

(ii) Various types of rational models can be handled by the algorithm;

(iii) The model order need not be known a priori, but is estimated by

the algorithm.

The main disadvantages of the algorithm appear to be as follows: v

(i) The algorithm is not efficient in the statistical sense;

(ii) The accuracy of the estimates in frequencies of low energy

densities is poor;

(iii) Some inter-channel "leakage" is apparent;

(iv) Positive definiteness of S(z) on the unit circle is not

guaranteed.

Point (I1 is inherent to any algorithm based on the sample covariances. Point

(Ii) is also typical to many algorithms based on samole covariances,

especially those which are based on some least-squares fit. Point (iii) can

be largely solved by the following modification of the algorithm: instead of

performing mode selection using the diagonal elements of S+(z) , we can

perform individual mode selections for the p2 elements of this matrix to

obtain p2 different denominators, instead of one common denominator. The

20
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various thresholds used in this selection procedure can be adjusted so as tomeliminate any undesired leakage. The improved version of the algorithm is

currently under investigation, and results will be reported later.

As to point (iv) the only way to guarantee positive definiteness of the

spectrum appears to be by direct estimation of the spectral factor B(z"1).

This leads, however, to a nonlinear problem, which requires some iterative

techniques for its solution - see e.g. [183, [19). Procedures for estimating

the spectral factor B(z"1) appear to be inherently more complex than

? techniques for estimating B(z1 )BT(z)

U'2
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{Figure la Example #1: right MFD - true spectrum

UFigure 1b: Example #I: right MFD - estimated spectrum

Figure 2: Example #2: sinusoids in noise - estimated spectrum

Figure 3a: Example #3: left M4FD -true spectrum

Figure 3b: Example #3: left ?4FD -estimateJspectrum
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APPENDIX F

OPTIMAL INSTRUMENTAL VARIABLE MULTISTEP ALGRITHMS FOR

ESTIM4ATION OF THE AR PARAMETERS OF AN ARMA PROCESS
0

.



.,. r r "W b -w -rr .. n = -mz.r .7 - .. .7 ' .7 r. . r - -• . .. .' - - " -- J.'C. V -' ' - - -° °''

r

Revised 10/85

OPTIMAL INSTRUMENTAL VARIABLE MULTISTEP ALGORITHMS FOR
ESTIMATION OF THE AR PARAMETERS OF AN ARMA PROCESS

P. Stoica, B. Friedlander and T. Soderstrom

ABSTRACT

Multistep implementations are derived for the optimal instrumental

variable (OIV) estimators introduced in [1]. The proposed algorithms provide

asymptotically efficient estimates of the AR parameters of an ARMA process.

The computational complexity of these algorithms is modest compared to the

-"(exact) maximum likelihood estimator. The performance of the OIV algorithms

. is illustrated by some numerical examples.
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1. INTRODUCTION

The need for estimating the parameters of an autoregressive moving-

average (ARMA) process arises in many applications in the areas of signal
processing, spectral analysis, estimation and system identification. A

computationally attractive estimation procedure, which has received

considerable attention in the literature, is based on a two-step approach:
first the autoregressive (AR) parameters are estimated using the modified

Yule-Walker (MYW) equations; then the moving average (MA) parameters are

estimated by one of several available techniques [2]-[7].

In this paper we consider only the first step of estimating the

autoregressive parameters. In many engineering applications the second

estimation step is not needed. The prime example is the estimation of

autoregressive signals corrupted by white measurement noise. In this case all
the information about the spectral shape of the signal lies in the AR

parameters of the signal-plus-noise ARMA process.

In a companion paper [i] we presented a number of results related to the
asymptotic accuracy of a fairly general class of instrumental variable (IV)
estimators, which includes the MYW estimator as a special case. In

particular, it was shown that estimation accuracy increases monotonically with

the number of MYW equations for an optimal choice of the weighting matrix used

,I in the least squares solution of these equations. Furthermore, the asymptotic
2- error covariance of the optimal IV method equals that of the prediction error

method. In other words, the optimal IV method is asymptotically (as the

number of data points and the number of MYW equations tend to infinity)
efficient. An alternative form of the optimal IV method involving pre-

filtering of the data used in the instrument vector while using a minimal
number of MYW equations was also discussed.

The main difficulty associated with the optimal IV method is that the

optimal weighting matrix, and the optimal pre-filter, depend on the second-

order statistics of the data, which are not known a-priori. The objective of
this paper is to propose several multistep algorithms for overcoming this

difficulty. As we will show, these algorithms provides asymptotically

, 
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efficient estimates of the AR parameters.

The structure of the paper is as follows. In section 2 we briefly review

the results on optimal instrumental variable (OIV) estimation derived in

!q [l]. Three approximate implementations of the OIV are presented and analyzed

in section 3: one based on an optimal weighting matrix and uwo based on an

optimal pre-filtering operation. The implementation of. these forms of the OIV

estimator by means of a multi-step procedure is discussed in section 4. The

performance of the proposed estimation techniques is studied in section 5 by

means of some numerical examples.

The work presented here and in [I] provides an extension of IV methods

which are usually applied to system identification, to problems of time series

analysis. For an overview of IV methods and their applications see [l1]-C12].

2. THE OPTIMAL IV ESTIMATES

Consider the following ARMA process of order (na, nc)

A(q 1 )y(t) = C(q 4 )e(t) , (11

Am where

2
e(t) white noise process with zero mean and variance 2

-) -1 -na
A(q 1 + alq + ... + anaq

C(q ) = 1 c1q ... + C nc

-1 1
q = unit delay operator (q- y(t)=y(t-1))

The following assumptions are made:

Al: A(z) = 0 = Izi > 1; C(z) 0 = IzI > 1

In other words, the ARMA representation (1) is stable and invertible. ]
3



This is not a restrictive assumption (cf. the spectral factorization theorem,

e.g., [16]).

A2: a n 0, c # 0, and [A(z),C(z)} are coprime polynomials.
na nc

In other words, (na, nc) are the minimal orders of the ARMA model (1).

Next we introduce the notation:

T0(t) =[-y(t-1) .... y(t-na)]T

e [al,..,a nalT, (2)

v(t) C(q' )e(t).

Then equation (1) can be rewritten as

T3
y(t) = * (t)e + v(t) (3)

The unknown parameter vector e will be estimated by minimizing a

quadratic cost function involving the data vector .(t) and an IV vector~Zm(t):

N T N"e;-arg min t p T 09- 7 zm ytl)!:IQ, (4) ~

a t=1t=

where

N = number of data points,

2 T
X:IQ =x Qx, Q , a positive definite matrix ,

and

Zm(t) = G(q"I) 1 m > na (5)

UD 4



where G(q"1) is a rational filter. We assume that

A3: G(q" ) is stable and invertible, and G(O) = 1.

It is straightforward to show that the IV estimate in equation (4) can be

obtained by a least-squares solution of the following system of linear
equations:

Y N N
1/2 NT / 1 2 NQ1/[ I Zm(t)oT(t}]; = QL[1 Zm(t)y(t)] ,(6)

t=1 t=1

where Q1/2 is a matrix square-root of the weighting matrix Q (i.e.,

Q = QT/2 Q1/ 2 ) . The class of estimates defined by (6) includes the various

MYW estimation techniques discussed in the literature as special case; see El]

for details.

It was shown in [1], that under conditions A1-A3, the covariance Pm of

normalized estimation error (/I)(e-e) obeys the inequality

P m [R Sm Rm](7)m - m

where

Rm = E[Zm(t)¢T(t)} , m x na , (8)

Sm-E{[C(q-')Z m(t)][C(q1)zm(t)]T , m x m. (9)

Equality in (7) can be shown to hold for the "optimal" weighting matrix

where Q = SmI  (10); m

/2" Furthermore, it was shown that

h Pm Pm91 ,for all m na . (11)

The monotonically non-increasing sequence converges to a limit denoted by

5.



P . This limit was shown to equal the (normalized) error covarlance matrix

PPEM associated with the Prediction Error Method (PEM). See [15] for a

discussion of the PEM and its properties. Here we note only that PEM is an

efficient estimator, i.e., PPEM equals the Cramer-Rao lower bound. Thus, the

IV estimator in (6) is asymptotically efficient if we set Q = S_ and letm
m + - . The asymptotic error covariance matrix P does not depend on-1 q-1

G(q" ) and we will usually choose G(q) = . See El] for proofs of the

statements above.

It was shown, however, that the rate of convergence of P is affected by

the choice of G(q"1) , see [1]. If we set G(q-1 )=,/C 2(q-) then we get

the fastest possible "convergence rate": ?m = P- for m > na . Note that for

m=na the matrix Q in (6) does not effect the solution and can be set to Q=I.

Another interesting choice for G(q" ) is G(q" ) = A(q-1)/C 2 (q" ) In

this case Sm  2 m . Thus, the optimal weighting matrix is Q = I (the

scaling factor J/X2 does not matter).

To summarize, we have (at least) three ways of generating optimal IV

estimates using equation (6):

OIV-1: Q = 1 , G(q"I ) = 1 , m + - (12)

-1 2 -1OIV-2: Q = I, G(q" ) = 1/C (q" ) , m = na (13)

OIV-3: Q = I, G(q' )=A(q 1 )C 2 (q'1), m +- (14)

The problem is that both of these methods depend on knowledge of unknown

quantities. This is the usual dilemma in accuracy ootimization. Our aim here

is to show how to overcome this difficulty for the case under consideration.

We will start by showing that replacing S. (in OIV-1), C(q" ) (in OIV-2)

and C(q1 ),A(q " ) (in OIV-3) by their consistent estimates, will not affect

asymptotic estimation accuracy. Then we show how to obtain such consistent
estimates of Sm and C(q"1) . The prooosed estimation procedures are -

therefore based on estimating Sm or C(q" ) and using these estimates in (6)

6



instead of the true Sm or C(q" ) . As we will see, the implementation of

OIV-I does not require explicit computation of C(q) This may be

advantageous in applications where only the AR parameters need to be

estimated. A more detailed discussion of the proposed algorithms will be

given in the following sections.

3. ANALYSIS OF THE OPTIMAL IV MULTISTEP ESTIMATORS

In this sections we analyze the asymptotic properties of OIV-. and OIV-2

by techniques similar to those used in [11,[13].

3.1 APPROXIMATE OIV-I

Let Sm denote a consistent estimate of Sm . Let denote the OIV-1

estimate (6),(12) for a given in (possibly m = m(N), where m(N) increases

without bound as N -) and let 81 be the approximate OIV-1 estimate with Sm

replaced by Sm Then we can state the following theorem.

Theorem 3.1

Let assumptions A1-A3 be true, and assume also that Sin-Si 0(1,,) and

that [m(N)) / as N + - . Then ;1 and a1 are asymptotically equivalent.
We will say that two consistent estimates of e say a and 91 are

asymptotically equivalent if

81 - 81 = 0(1/N) for a > 0.5

tWe will use throughout the paper the notation O(e) to denote a random,

variable with standard deviation Ke , where s is small and where K is a

(fintie) constant independent of £ .

7
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Proof:

From the assumption above it follows that for sufficiently large N we

have

Sm 1. (S m+ 0 S O+INVIWfI + 0(m/V4))'S-1S-1 2+0(m 2 (15)

Note that the OIV-l solution of (6) can be written explicitly as

T 1 -1 T -I N
[R .Sm R. [R~ S- z (t)y(t (16

where

RN I - tz (t),T(t) (17)

It is straightforward to show that

T -i -I T -i 1 N
ei'e=[R iSm RN] [RNiSm JW t zm(t)v(t)}]=O(m/VN). (18)

t= 1

Similarly,

T 1-1 T i-i' 1
9m RN]R i R N R m -W. zm(t)v(t)i]* (19)

From (15), (18), (19) it follows that

T T- 2- -1 T -1 2

al e{R -Sm+O m//I-]RN } { RN[S+0m)

zm (t)v(t)}

RT -R 1 4 RTs " 1z=R Ns RMN"O~m 1ViT)}'l{R ,m 4t!1zM.,t v(t)+°(m /N)l

' - 0(m5/N) (20)

8
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Since m5 /N =(m/i).(m4/i) , and since m4// . 0 by assumption, it follows

that the second term in (20) goes to zero as N + - , faster than the term

81 - 9 (which is 0(m//N ) , cf. (18)).

The convergence of p to P may be slow, especially if C(z) has zerosm

close to the unit circle, see [1]. For the idealized OIV-1 estimate we

may then need to consider a large m in order to obtain good accuracy. For the

practical estimate Sl the situation is, however, different. If m is too

large with respect to N then and , may not have the same distribution

and thus e. may not be (asymptotically) optimal. Theorem 3.1 gives an upper

1/8-s
bound on m (m(N)=N /  , 6 > 0) guaranteeing that 61 and 81 are

asymptotically equivalent However, no attempt has been made to give a tight
bound. In fact this seems quite difficult since a tight bound would be
problem dependent. In section 5 we discuss further this point and illustrate

it by means of some simulations. It is shown there that the bound of theorem

3.1 is quite conservative. That is to say, a, and 6 may behave similarly

for m > N1/ 8 . As explained earlier, one needs to consider large values of m

when the convergence of Pm to P is slow.
b n

3.2 APPROXIMATE OIV-2

Let C(q"I) denote a consistent estimate of C(q1) Let 2 be the

* approximate estimate obtained by replacing C(q" ) by (q-) in the OIV-2

estimate 82 (6),(13). Then we can state the following theorem.

Theorem 3.2
'.

"'. Let assumptions A1-A3 hold true and assume that

c-c.=0(1/4fl, i=1,...,nc. Then 82 and a2are asymptocially equivalent.

Proof:

The OIV-2 solution of (6) can be written explicitly as

9 ","



a2 R1 : 1 42 - ) - (t-nc) y(t)} (21)
t=1 C (q-

where '1

1 T nR , i q(t-nc) * (t) (22)
N = T 1 C 2(q-1)

It is straightforward to show that

N 1
R-_ 11 Z _ _ _ (-_) v(t (23)2- N N = C 2(q- 1

and with
S iI T

1 R, 2 i (t-nc) T (t). (24)

that t=1 C (q")

2 ee [RN -{ -1 (t-nc) v(t)} :
t I C (q1

,RN t_ 1 ."-

t-f 2 I -1)c 1) .* t=1 C (q)

2 1
t=1 C (q

," •• ...( t-2nc) ]v(t) )(C-C) )+0( I/N 1=(B e-O0(I/N) (25 ).
A"

where

c = cI ,.••,c = :c 1, .,ncT

Since 2 - 0(i/IN) it follows from (25) that ; and a are asymptotically

equivalent. Note that here the choice of the number of MYW equatibns is not

an issue, since optimality is achieved for m = na . However, the
implementation of the 0IV-2 estimator requires estimation of the ".4

10



C(q1 ) polynomial, while this can be avoided when implementing OIV-l.

Estimating C(q" ) is not an easy task and one often wants to avoid it, if

possible. The relative advantages and disadvantages of the two estimators are

discussed further in the following sections.

q3.3 APPROXIMATE OIV-3

Let C(q-) and A(q-) denote consistent estimates of C(q" ) and A(q"

respectively. Let e3 be the approximate estimate obtain by replacing

C(q') and A(q') by C(q-) and A(q- in the OV-3 estimate a3 (6),
; (14). Then we can state the following theorem.

N.

Theorem 3.3

Let assumptions A1-A3 hold true and assume that -c = O(1/Vn)

i=I,...,nc and al-a=O(1//W) , i=l,...,na. Then a and 13 are

asymptotically equivalent.

Poof:

Let

N
SRNz (t )  (26)

where

r:" z(t) A(q-1 (t-n(-7)(q- y(t-nc-ml2

*, then

R N RN + 0(1/A (28)

RN-- E(z(ts T(t }
m1-



,.1..

4.

where Zm(t) is as defined in (5) with G(q-1 ) = A(q'I)/c 2(q"1) .

Thus,

N
F 1 ^ z (t)v(t)=

*T ,-1-T 1N+ (R RN) RN Z(t)v(t) (29)

Now

(iT i -= (z( 0(NN1-1+0(mI) (30)

and

SZ m(t)v(t )  N (t)v(t ) + 0(i/N) (31)
t=1 t=1

Thus

3-e = £[(RTR )-I + 0(m/VN)]tRT+O(1/V/]

N4

Nw I zm(t)v(t) + 0(1/N)] =
t= I

N

t= 1
O(m/VW -

0(3-6) + O(m /N) (32)
or

63 - '3 = 0(m2/N) (33)

Since (63  1 e) = O(m/,fl (see (32)), we conclude that for ;3 and ;3 to
be asymptotically equivalent it is sufficient that



I.-
q

m// -o as m,N (34)

In that case m/N = (m//-) goes to zero faster than m/,.r.

The requirement in (34) that m//IT - 0 is not restrictive, since the fact

that t3- 0=O(m//T) will not be true if (34) does not hold.

The behavior of Pm (for OIV-3) as m increases is quite different from

its behavior in the case of OIV-i. By specializing the results in [I] to the

case of OIV-3, it can be readily shown that P- obeys the discrete-time

Lyapunov equation

-A A= bbT

where

A= ,

1:. ~b = E{fo(t) • ~')e( t-nc-i )

C(q- )
From the equations above we conclude that the convergence rate of p depends

on the zeroes of A(q 1) , but not on the zeroes of C(q11 The reverse is

true for OIV-1; see [1] for details. More specifically, -
2m ,

' ml IXMAX1
where XMAx is the zero of A(q"I) with the larqest modulus. Thus, when

A(q-  has roots closer to the unit circle than the zeroes of C(q1) , we
expect Pm to converge faster for 0IV-1 than for OIV-3 (and vice-versa when
the zeroes of C(q" ) are closer to the unit circle than the zeroes of

A(q ' )) .

4. IMPLEMENTATION OF THE OPTIMAL IV MULTISTEP ESTIMATORS

4.1 THE OIV-1 ALGORITHM

Let us denote by r (T) and R (T) the covariances of v(t) and z (t)v z 1
respectively:

13



r (T) = E{v(t) v(t-t)} (35)

R m) W zT (t- r1 (36)
z = mt

Next note that,

71
z 1IT nc nc T

S= E{C(q lz(t)C(q'zT (t} = Z c cjzm(ti)zm(t)
i t= j =0

nc nc nc nc

I i j i c.c.R (j-i)= I ( j ccj+T )R ):
i=O j=O -=-nc jO

w 2 ncrv (F)Rz(F) (37)

to Q. Henc
i/ (In the following we will omit the facor i/X2 appearing in (37) since the IV-.

Sestimates in (6) are invariant to scaling of the weighting matrix Q). Hence

we can consistently estimate the optimal weighting matrix by S 1 where

nc (38)

TL -nc r( )(

where r (r) and R (T) are the sample covariances

r (r) = -  v(t)v(t-.1 r (- ) (39)
t=r IT

NT (40
Rr) = W zm(t) z (t-T) = T (

Note that (38) provides a method for estimating S without explicit

estimation of the (ci}parameters. To estimate rv(T) via (39) we need to

compute (an estimate of)

14



v(t) : A(q " ) y(t) (41)m!
An alternative way of computing r (r) follows from (41):

na na
r v T a. a. ry (.+i-j) (42)pi=O j=0 j

Note that both (39)(41) and (42) require knowledge of the {ail parameters.

Since A(q ) is not known a-priori, we must use a multistep procedure. We

first estimate (ai} using equation (6) with Q=I (and G(q"I) = I ). The will

be problem dependent, but generally m will be considerably larger than na; see

[1][7]. This gives a consistent, although not efficient, estimate of the AR

parameters. These estimates can now be used to compute rv (T) via (39) and

(41), or (42). Next we compute Sm (29) and use it in the OIV-1 procedure to

get the final (asymptotically efficient) estimate of the AR parameters.

Vi We can now summarize the proposed implementation of the OIV-1 estimator:

(i) Estimate {ai) by equation (6) with Q = I, G(q" ) = I and m n ha.

(ii) Compute R z(T) (31) and rv (T) by (39) and (41), or (42), using the

(ai estimates from step (i), and then compute Sm (38).

(iii) Compute the square-root im1 /2 of ; then solve equation (6) withm m
Q 1/2 = pi/2 to obtain the final {ail estimates.

m

Note that the computation of Sm via equation (40) does not guarantee

that S will be a positive definite matrix. It may happen, therefore, that
p1-2 does not exist. This is unlikely to occur for large N, but is quite

likely for small sample sizes (especially if C(z) has roots close to the unit

circle).

The following is a procedure for handling the case where Sm is not

positive definite. Let {xi} I m be the ordered eigenvalues of

SMI > ... and let (vIT= be the correspondingIm >l X 2 > "'... ndlt{v~=

15
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eigenvectors. Let

Xk )  k = 1,...,n

(43)

Xk < k = n x 1, ..., m

with e being a (small) positive number. Further, let % be the class of

positive definite matrices with eigenvalues larger than or equal to E

Then, according to Lemma Al in appendix A, the Euclidean distance between

Sm and the elements of V" is minimal for the matrix Si given by

Sm = V'[diag(xl"'"Xn eq"'".. ]'vT (44)

where V = [vi ... ,vm . We will use

im 2=diag( ,..., , , ... , 
T  (45)

in (6) instead of S/2 which may not exist. Since Sm must be a

consistent estimate of X2 Sm, e must go to zero as N tends to infinity. To

guarantee consistency we may set E = 1/N, a > 0 . As N + we will

have Sm 4. Sm , w, ere Sm is a consistent estimate of x2S . Concerning the
choice of B we note that the smaller £ ,the smaller is the distance between

Sm and SM cf. Lemma 1.1. However, too small an e may lead to ill-

conditioning problems. Thus e should be chosen as a compromise between

accuracy of the solution and numerical stability. Finally, note that if the

estimated covariance matrix Sm happens to have negative eigenvalues then we

may suspect that the {ai} estimates obtained in Step (i) were poor. We may

then wish to repeat Steps (ii)-(iii) using in Step (ii) the improved estimates

of Step (iii).

* 4.2 THE OIV-2 ALGORITHM

The computation of the OIV-2 estimates requires the estimation of the

(ci} parameters. There are, of course, many different ways in which this

could be done. We consider here one such method based on factorization of the

16
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-- I

MIA spectrum [81-[IO].

Let S (z) denote the spectral density fucntion of v(t), (2), (41). We
have

nc z k  21
Sv (zk)k= xC(zC(z"  (46)

where r (k) denotes the covariance of v(t) at lag k (35). In other words,
V

the C(z) polynomial is the spectral factor of the spectrum of v(t). This

suggests the following procedure for estimating the (ci} parameters:

(a) Estimate the (ai} parameters using (6) with Q=I, G(q" I) = I

m na.

(b) Compute the sample covariances rv (k), k=O,...,nc , using (39) and

(41) or (42).

nck

(c) Perform spectral factorization of Sv(z) = rv(k)zk to obtain

v

} " =-nc

Note that the sample covariance sequence {rv(O),...,rv(nc),O,O,...}

is not guaranteed to be positive definite. Thus, Sv (z) may not be

factorizable. This may happen in the small sample case, especially when C(z)

has roots close to the unit circle. However, note that OIV-2 requires an

estimate of 62(q-1) rather than of 62 (q-1) We can always obtain a consistent

estimate of C2(q) by factoring S2(z) , since

S(eJw)=C2(eJec2(ej'J) > 0, for all w (47)

even though Sv(e j ) may be negative for some values of w

We can now summarize the proposed implementation of OIV-2:

(i) Estimate C(q') using the spectral factorization method described

above. Let G(q = 1/C2(q

17



(ii) Estimate the AR parameters using equation (6) with Q - I, m = na

and a(q-) from step (i).

Note that it is possible to iterate this procedure by using the AR

parameters obtained in step (ii) to improve the estimate of C(q 1) , by

repeating step (i) (the factorization method) with the new {ai} parameters.

4.3 THE OIV-3 ALGORITHM

The computation of the OIV-3 estimates is very similar to that of OIV-
2. The only difference is that 6(q-) = A(q )/2(q-) where A(q-) Is the

* current estimate of A(q 1) (obtained from step (a) in the first iteration of

the algorithm, or from the previous step (ii) in the case of re-iteration).

4.4 COMPUTATIONAL REQUIREMENTS
.1,

The following is a brief summary of the number of arithmetic operations

(i.e., multiplies and adds) required by each of the algorithms described

above.

OIV-1:

Step (I: requires approximately -(m+na)N operations to compute the sample

covariances and _m3 operations to solve for the initial estimate (solutions

requiring only -m2 operations are also possible if the Toeplitz structure of
2

the Yule-Walker equation is used). Step (ii): requires -(na) .nc operations

to evaluate r (T) using (42), or -(na+nc)N operations using (39), (41). The
v . 2 3

computation of Sm requires -nc.m operations. Step (iii): requires -3m3

operations. A recursive OR algorithm which appears to be useful for solving

(6) Is presented in Appendix B.

G1"-2

Step (a): requires -(m+na)N + m3 operations, as in the case of OIV-1. Steps

32
(b): involves the computation of rv (T) which requires either ~(na) 2nc orv

-(na+nc)N operations. Step (c): computational requirements will deoend on

*( 18



r

the particular factorization technique. Step (ii): requires
3

-2(nc+na)N + (na) operations.

OIV-3:

Steps (a)-(c) -- same as OIV-2. Step (ii) -- same as step (iii) of OIV-1,

with the addition of (2nc+na)N operations to perform the pre-filteing.

In summary:

3 2 3 2OIV-I: (m+na)N+4m +nc.m (or (m+2na+nc)N+4m +ncm

OIV-2: (m+2na+2nc)N+m 3+na 2(nc+na) (or (in+4na+4nc)N+m 3+na )

OIV-3: (m+2na+2nc)N+na2 nc (or (m+3na+3nc)N+43

Note also that re-iteration of OIV-l does not require much computation

since the sample covariances need to be computed only once. Iteration of OIV-

2 and OIV-3 is more costly since the data need to he refiltered and some

sample covariances recomputed at each iteration.

5. NUMERICAL EXAMPLES

In this section we present some selected results of comDuter simulations

which illustrate the behavior of the OIV algorithms discussed earlier. Tables

1-10 summarize results based on 100 independent Monte-Carlo runs performed for

each of the test cases described below. Each of the tables contains the means

and standard deviations (as well as mean-squared-errors) of the AR parameter

- estimates obtained by applying the MYW, OIV-I, OIV-2 and OIV-3 algorithms to

simulated data. The OIV algorithms were used with different values of m and

iterated three times.

Note that OIV-2 was run for values of m different from .-na. The

asymptotic theory shows that OIV-2 is optimal only for m-na, not for m > Ia.

However, in the finite data case we found that increasing m tended to make the

algorithm more robust by reducing the probability of singularity of the matrix

19



which needs to be inverted. In the first two cases the data were the sum of a

second order autoregressive process and white noise:

y(t) = x(t) + n(t) , (48)

where -. 'I

x(t) - -a x(t-1) - a x(t-2) + w(t) (49)
12

and whe.re w(t) and n(t) are mutually uncorrelated white noise processes whose

variances were chosen to give the desired signal-to-noise ratio

(SNR = Varfx(t)}/Var{n(t)}) . As is well-known, y(t) has an equivalent ARMA
(2,2) representation. The zeroes of the MA part can be shown to be farther

away from the unit circle than the zeroes of the AR part. As the SNR

decreases, the MA zeroes approach the AR zeroes.

Case 1: Narrowband, high SNR

A(z) = 1 - 1.4z " + 0.95z - 2  (zeroes at .975.e± j 4 4 .O)1

SNR 20 dB, N = 4096

The MA polynomial of the equivalent ARMA representation of this process is

C(z) = 1 - 0.3155z 1 + 0.1233z 2 . , (zeroes at .351.e j63 3 ) -

The results are summarized in tables 1 and 2. In this high SNR case the

experimental results are very close to the asymptotic bounds.

Case 2: Narrowband, low SNR

As in case 1, with SNR = 0 odB

C(z) = 1 - 1.20955z-1+ 0.726837z2 (zeroes at .853ej448

The results are summarized in tables 3 and 4.

,%

20
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TABLE 1: Eapertuental and Theoretical Estimation Accuracy for Case 1. Parameter a,
---- ---- - - ---- ---- -- - ----- ---

-. 2 4 10 40

Heam t std.daw. -1.40t:.0.0531 -1.40t.00630 -1.40t.00530 -1.4k5.00611

HM~ am 0.00542 .00541 .00537 .00619

Theoretical std.dov. 0.00533

Mean t std.dev. -1.40t.00538 -1.40t.00528 -1.40t.00537
-. Iteration I ------------------------------------- --------------------------

a" -- .00549 .00539 .00548

Mean J: std.dev. - 1.40t.00545 -1.40t.00535 -1.40t.00534
OIV-1 Iteration?2 ------- --------------------------- ------ --------- --- --

mse . .0056 .00546 .00545

SMean t std.dev. -- 1.40t.00544 -1.40t.00541 -1.40t.00531
I1tera4t-1on 3-----------------------------------------------------

mse OOS.S55 .00552 .00S42

-~~~~---------------------------------------ensddv 14±.04 .0.00547 -1002 ------------- .----------

OI--2-- -------------.----------------------.I--- ------- ------ --------------- -

Rean t std.dev. -1.40±0.00547) -1.40t.00547 -1.40t.OO544 -1.40t.00631

Iteration 2 la" 0.067.00550 OS .00559 .00638

Mean t std.4ev. -1.40±0.00530 .1.40t.00538 -1.40t.00544 -1.40t.00632

-M n --- t--------d----e----- -- --.0.03 -14±00 -----.06

Iteration 1 ae O-SS O013O OO01 .00639

Mean s sdOde5. -1.40t.01320 -1.40t.01054 -1.40t.0062

-v- - ------- - -" - --- -------------------------

*Iteration 3 'so 4 -;S .0141 .00W0639

Theoretical std.dev. 0M012

-- - - - - - - - - - -- - - - --- -- - - - - - - - - - - - - - - - - -

Meant sd~dv. -.40.01S -140*010 -1.Gt.060

-- ------ ------ -----------



TABLE 2: Exp" emtal nd Theoretical Estemation Accuracy for Caso 1. Parmeter

•2 4 10 40

Mean t std.dev. .949t.0476 .9491t.004792 .9492t.004974 .9492t.005623

mvw ae 0.004863 .004882 .WS031 .005878

Theoretical stdmw. 0.0068

Mean t std.dev. -- .9490t.004816 .9490t.004764 .9490t.004792
Iteration I ,. 1111111

rse .004916 .00483 .004894

Mean t std.dev. -- .9490t.004866 .9490t.004800 .9490t.004800
01V-I Iteration 2

.. -- .00495 .004800 .004902

Mean t std.dev. .9490t.004840 .9490t.004800 .9490t.O04816
I t e a ti n 3 m e - 0 04 9 39 .00 48 9 9 " .00 4 9 18

Theoretical std.dev. 0.00506

.Mean t std.dev. .949*.004981 .9490t.OOS608 .9493t.005164 .9493t.006057

Iteration I me 0.005096 .00154 .00S217 .006101
OIV-2 ----------------.-..-- -----

MOea std.dev. .949t0.004966 .9490*.004"9 .9493t.00S134 .9493t.006082

Iteration 2 use 0.00060 .0006 .006188 .006126

Muuan ± std.dev. .949t0.0049S8 .9490t.005012 .9493t.006134 .9493t.006044

Iteration 3 se 0.005073 .00S109 .005168 .006069

Theoretical std.dev. O.OOS06 . ...

Mean t std.dev. - .9467t.01227 .9480t.007968 .9480t.00SSS9

Iteration I me - .01270 .00243 .00S912

1M t std.v. .9493t.01229 .9494t.00136 .9487t.005S87

Iteration 2 e -- .01231 .0081 5 .00W739OIV-3
SQan t std.dev. .9493t.01285 .9495t.006342 .94t.00j614

It2eratio 3 - .01296 .008360 .005771

4.Theoretical std.dov. 0.0117
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TABLE 3: CaErimental and Theoretical Estimation Accuracy for Case 2, Parameter al
---------------- ------------------------------ I--------------------------

ea2 4 LO~ew21 40

Mant1ddv .729t2.597 -9t.0 81.2S-.55211.1883

MY "2.618 .614 .60 .866

Theoretical std.dev. 0.0130

Mean i: std.dev. -- -1.16t.399 -1.16t.307 -.9l54t.2834
Iteration I -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -

Su~1se--------* .448 .388 .5614

Mean t std.dev. - -1.21t.397 -1.26t.301 -1.152t.2800
01W-i Iteration 2--------------------------------------------------

mit - .4"2 .333 .3740

A.Mean t std.dev. -- 1.22t.391 -1.28t.288 -1.266t.2372
Iteration 3 ---------------------------------------------------------------------

Ie - .429 .311 .2722
--------------------------------------- -------------------------------

Theoretical std.dev. 0.0127
----- -- - ---- - --- -- - - ---- ---- - -- -- -- --- -- -- - -- --

[Mean tstd.dmw. -0.8098W.269 -1.27t.335 -1.29t.270 -1.192t.2370

Iteration I ue .4 .356 .292 .3154
OIV-2 ------------------ .------------- ------------- -----

Mean t std.de. -1.096t.9459 -1.30.317 -1.34t.275 -1.375t. 1276

Iteration 2 use V- ."935 .334 .281 .1301

Mean i std.dev. -0.9804t1.240 -1.32t.315 -1.34t.344 -1.405a.119S-- --- ---I ------ --- ------
Iteration 3 us 130 .327 .351 .1197

Theoretical std.dev. 0.00674 ---

ten t std.de,. -- -1.15t.423 -1.19t.29% -. 9724t.280%
Iteration I am- .493 .3;i .5115

Mean t std.dev. - L-.21*.371 -1.291t.2847 -1.198t.2507I -------- -------- ------I-- ------ -------
Iteration 2 -se --. 417 .3047 .3222

Mean t std.dev. -1.27.328 -113.93128.09

'p Iteration 3 se-.34 .3079 .2351

Theoretical stddev. .0154
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TABLE 4: Experimental and Theoretical Estimation Accuracy for Case 2. Parameter a2

*2 4 10 40

Mean t std.dev. .9279t2.672 .5293t.3846 .4763t.2238 .44.4
---------------------- -- --- ------------------ ...

NYW use 2.672 .5700 .5239 .7157

Theoretical std.dev. -- 0.0211

Sean i std.dev. - .6980t.4347 .7S43t.2424 .5358t.2247
Iteration 1 -------------------------------------- ---------

a's. .502S .311S .4112

Mean t std.dev. .7405±.4275 .8369t.23S4 .7375t.2229
OIY-1 Iteration 2 ----------------------------

use -. 4761 .2-61-1 .0

Mean t std.dev. 7 74±422 .53±2 834-2-t.18-28 --
Iteration 3 ----- .--------.----------------------I---------------

Xse .4664 .2399 .2164
-- ------- ----- .------------------------ -. - --------- ----------

Theoretical std-dev. 0.0194

Mean t std.dev. .7778t.6499 .8279t.3295 .8676t.2074 I.7636t.1945
Iteration 1 use .6723 .3515 .2231 .2694

Orv-z [ ---------- - -. ------- - --------

Mn t std.dew. .8574t.7826 .8695t.2966 .9271t.1424 .9283t.08034

Iteration 2 mfe .7880 .3074 .1U2 .08321

Mean I std.dev. .8611t.4633 .8934t.2389 .9440t.07S94f .9S04t.038SO0,

Iteration 3 mse .47t7 .Z4SS .07518 .03850

Theoretical std.dev. 0.0067 - - f -

mean j: std.dev. - .7661t.2863 .7815±.23261 SS4 t.2ZEO0

Iteration 1 Mlsa .3395S .2872 .4299

mean t std.dev. - .8008t.3095 .8603t.2122 j t8±22

Iteration 2 use -. 3426 .2304 .265
01W-i --------- - ---- - ---------------------- - ---------~ -------

mean ± std.dev. .8337t.261S .8904t.2102 .8443t.1508
-- ------------------------- ----------------- -------

Iteration-3 uneo .2862 .2185 .1841 1 A
Theoretical std.dev. 0.0157
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TABLE 5: Experimetaland Teoretical Estimation Accuracy for Case 3. Prater a,

2 40

mn std.dev. .3401tl.96 -.9641t.4967 -.8148t.2602 -.3607t.1214

|m 12 .7307 .732 1.146

Theoretical std.dev. 0.547

Std.dev. -1.285t.6152 -1.4S2t.06578 -1.302t.09564
Ituration I------ -------------------------------------

SIM IRS. .6517 .06153 .2202

° -------....... ... --- ---- ------ --- -s -----. -s -----MOO t td~ev.-1.320t.6188 -1.491*.04059 -1.478t.03514
0tW-I Iteration 2 - -- - - --- - - - -- -- - - ----- - - -- -

-s" .6443 .04164 .04164

"~~ ~~~~ --- -,. ----------------- -. . -.... ------ ....... -;. . -------..
Mean t std.dev. -1.333t.6047 -1.491t.04180 -1.483t.03768

It.ratio 3 ... ' ..... ..----------------------------- . . ----
, _ _  .6272 .04276 .04137

"-- --" * ---- --- -.+ --- ------- -. --- :-----:---

Theoretical std.dev. 0.491

--r f,-_-.---.-----------.,,-, -.,.,,--, --,-,-----,,,- -,----,

Mean t std.dav. -1.454t.2030 -1.484t.04267 -1.356*.1225

Iteration I on- .2082 .0462 .1891

•.n t td.dvs . -1.47t.2055 -1.4t.0307 -,.S0.t.05697

Iteration 2 on. .2070 .05325 .05724

;ea Tt std.dev. 1.474t.2228 -1 506t.05888 -1.514t.06048

-. -.------- - ----.-------

Iteration 3 a" .2243 .06916 .0619

Theoretical std.dev. 0.0139 -

ften std.dev. -. 9022*7.139 -1.429t.2372 -1.445t./07417 -1.152t.l534

Iteration 1 mon ;.6 27; 042 3

Nmw t std.dev. -1.569*1.134 -1.4Sft.2476 -1.466t.06375 -1.430t.10"4

Iteration 2 a" 1.3 2107213 .1258
01V-3 - .------ ---

teo td dav . .492t.1007 -1.467t.2483 '-1.466t.0903 -1.423t.089716

I teatin 3 one 0.1010 .2505 .09710 .1166

Theoratical Std.deo. 0.0160

V.,
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TABLE 6: Experimental and Theoretical Estimation Accuracy for Case 3. Parameter a,

~~~--------------------- ----- - ------- - - ----------------- r ...
~~~------------------------------------------- ------------ - ------- ------- --

Mentstd.dev. -. 5767t9.21 .3323t.3235 .2114t.17 -.718.1006
--------------------------------- - ----

NYV uOw 9.299 .4897 S5234 ."783

Theortica stddus.0.335

M~lean t std.dev. .5733t.3739 .6711t.04926 .5G56t.07516
Iteration I-------------------------------------- -------- -- -----

use .3948 .0S712 .1540

Mean t std.dev. .S91t.3756 .69S3t.03093 .6889t.02725
01W-I Iteration 2 --- .---- ---------------------------- ----------- ---

Mus .3897 .03129 .02942
--- eration --- 3------------------------------------------------

Ieain3 Mean t std.dev. .6051*.3654 .69S6t.03173 .69S6t.02699
se.377S .03203 .02734

Theortica stddev.0.301

'M std.dev. -0.7038t13.22 .6674t.1260 .683St.03746 .589t.09896
---------- ---------------------------------------

Iteration 1 ase 13.29 .1302 .04093 .1484
OIY-2 ----- ----- ------ - ----- ------ - - ----- ~-- .--

Mean t std.dev. 0.1563t.61'B .684St.122t .7003t.04660 .7137t.04116
--------------------- ----- ----------- ---

Iteration 2 *ms: .6173 .22 .04660 .04337
-4 - ---------------------- - ------------------.

MO t std.dev. 0.6952t.08419 .6912t.13S0 .709St.05817 .7373t.06200
- ---------- -------------------------------

Iteration 3 use 0.08433 .13S2 .05893 .07234

Theoretical std.dev. 0.0138

Mean t std.dev. .6626t.1356 .6610t.05672 .4685t.1129

Iteration 1 0s" .1407 .06885 .2S7S

Mean * std.dev. .6771t.1479 .6815t.04338 .6543t.06464

Iteration 2 usa .1497 .04718 .07915
OIW-3 ----------------------------------------------------------

Mean t std.dev. .6914*. 1523 .6819t.06095 .6598t.05870

Iteration 3 use .1526 .06359 .07113

Theoretical stddev. -0------ --. 0185----- ----
- ----- ---- --------- - -------- --------- ----

26

..................................................



TABLE 7: Expeioantl and Theoretical Estimation Accuracy for Cast 4, Paraeter a1

a2 -- - ---T -- 10 4-----

Mean t std.dev. -1.687t.0079 -1.687t.006607 -1.687t.005902 -1.687t.006709

- - - -- ---- -- -- ---- - - --- - .-- -- -- ---- - -- --0--- - -- -- -1. 8 ± 0 5 9 ----a. 09 6a" .008070 .005721 .0;;9iL .I0i74z
-~ ~ ~ ~ ~ ~ ~ ~ ~ 052 .- 58 .01890 ---------------- ------ ------- --

Theoretical std.dev.

Mean I std.dev. -168.034-1.687t.05325 -1.687t.00526 -1.686t.0S682

Iteratione I --------- - .-----0---5- -------------- - ---------- 2 ------------------------

2 se I 050 OOS852 .059 .009733

Mean * std.dev. -168.033-1.687t.005765 -1.687.0055 -1.688t.013456

Iteaton3 as* 0042 .005877 .005387 .01640
The-----ca- --t - -- -- --- -- ---- - - - - - ,- - -- ---- - - - - - - - - - - - -

Mean t std.dev. - -1.687t.001697 -1.687a.005325 -1.689.018905
Iteration 3 -- --s ----- .0--0--------.----2

ItraiWI2us .010 .00911 01060
---- --------------------------- ---------.----------------------- ,---------- ------

Mean I std.dev. -168.034-1.698t.020195 -1.688t.00950 -1.687±.006322

Iteration 3 mse .005397 .00880 .006 221OSS

Thortia std ~ dv I.Bj.M S 1detv.M4 -168.060

----- ------------------ -----..-.- --- - -Itertion2 me .0%01 OSS2 DOS" OS7I
-168.033-.88.0657.8t0052 -.9t06 6

-- ~~~~~~ ~ ~ ~ ~ ---- - ----- - ------ - ---------- - - -
---------- ~ ~ ~ ~ ~ ~ ~ ~ ~ ---- -- - ---- -- - - - - -- - - - -



TABLE 8: Exoerimental and Theoretical Estimation Accuracy for Case 4, Parameter a2

m2 4 10 40
-- -- e-- -- -- - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Mentstd.aev. .94881.007186 .9487-..00660 4  .9488t.006789 .9491t.007339-

M e se .00732S .006738 .006885 .007399

Mean tstd.dev. .9487t.006703 .9488t.006391 .9467t.01466
Iteration I1 - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -

mse .006836 .006499 .01503

Mean i; std.dev. .9487t.006691 .9488t.006373 .9497t.01053
01V-1 Iteration 2 -- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -

mse .006825 .006480 .01053

Men±std.dev. .9487,-.006674 .9488t.006336 .9481t.01965
Iteration 3 I------------------------------------------------------------------

I se .006808 .006445 .01974

Theoretical std.dev.
-------------------------------------------------------- -------------------------

Mean t std.dev. .9489t.00638S .9489t.006409 .9491t.006616 .9492t.007355

Iteration I mse .006478 .006498 .006684 .00739S

Mean t std.dev. .9489t.00644S .9489t.006415 .9491t.(o06593 .9492t.007387

Iteration 2 mse .006544 .00650 .006658 .007426

--eore-ica- -t~ ev - -- - - - - - - - - --- -- - --- ---- - - - - - - - - - - - - - - - - - - - - - -

Mean ± std.dea. .9490t.006415 .9489t.006397 .9491t.006622 .9492t.007387

Iteration 3 --------se-- ;& -- --- .650 ---------- .006687 .007426

mean I std.dev. 9480t.02086 .9483t.01044 .9479t.00%935

Iteration I s .02095 .01057 .007243

Mean i std.dev. .9531t.02286 .9506101010 .9489t.006760..- --- -- -- -- --- -- -- -- -- --- --- -- -- -- -- -- -- --- -- -- -- -- -- --
Iteration 2 use .02307 .01011 .006855

- - - -- -- - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -

mean f stri.dev. .9536t.02681 .9506t.01087 .9488t.006845

teration 3 use .0270S .01089 .006960 4
Teoretical Std.dev. +1I
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bi-diagonalization and a QR algorithm. Solutions corresponding to singular

values less than 10-8 times the largest singualr value were set to zero (in

effect decreasing the assumed rank of the MYW equations and producing the

minimum-norm solution of the underdetermined set of equations).

OIV-1: The algorithm was implemented as described in section 4 and appears to

be quite robust. Since our simulations involved relatively long data records

we did not encounter problems with Sm being non-positive definite. Thus, we

did not have to use the procedure described in (43)-(45). In fact we computed
i1 by the Levinson-Durbin algorithm, applied to the first column of

Sm . We used equations (39)(41) to estimate rv( )

OIV-2: The factorization of S (z) was oerformed by computing the rootsv
of zncSv (z) . All the roots outside the unit circle were reflected inside
the unit circle, and the complete set of roots was then used to compute
C2 (z) . In this case we noticed that the filtering operation (by

G(q"I) = i/C2 (q-1 )) introduced a transient which needed to be eliminated.

To limit the duration of the transient we "contracted" the roots of the

polynomial C2 (z) by replacing b2(z)=l+cz-+..

E2(z~r)4~z+ 1 2nc -2nc
(n)=cnzl...+2ncn z , where n = 0.99 . By construction, the

roots of (2(z) have maximum modulus of 1. To eliminate the effects of

transients in (G(q')y(t)) , the first 200 samples of the filtered data were

discarded.

OIV-3: Implementation was very similar to OIV-2.

6. CONCLUSIONS

We presented several multistep implementations of optimal instrumental

variable algorthms for estimating the AR parameters of an ARMA process. These

algorithms were shown to provide asymptotically efficient estimates of the AR

parameters at a modest computational cost, compared to methods such as the

Maximum Likelihood Estimator. The OIV algorithms are useful in situations

where the MYW method does not provide accurate estimates (e.g., for ARMA

processes with zeroes near the unit circle). The performance of the oroposed I
algorithms was illustrated by selected numerical examples.
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APPENDIX A. THE BEST POSITIVE-DEFINITE APPROXIMATION OF

A SYMMETRIC MATRIX

Let A be a mxm symmetric matrix. Let x 1 ) 2 > ... xm be its

eigenvalues and vI ... ,v be the corresponding eigenvectors. We have the

following result, which is a slight modification of a similar result given in

Lemma Al. Let be the class of positive definite mxm matrices with

eigenvalues larger than or equal to a given (small) positive number .

Then

infeA-3 : [=Xn+l-J 2 + .+ - 2 1/2 (A.1)pp Be c-)m

where aA = [trAAT]1/2 = r a 2 1/2 denotes the Euclidean norm, and

are the eigenv l&es of A that are smaller than € , that is

k

(A.2)

k < 
k=n+l,...,m

Furthermore, the infimum is attained for

31



• .A. 3)0lB =V. x , " T (A.a) J

j .

with V = I ... IV

Proof: We have

2  T 2  m 12 m 2

IIA-BuIV vT(A'B)V (xi-cii +
where ci, is the ij-element 0f 1 i

C - vTB V (A.4)

Clearly C has the same eigenvalues as B. Thus we can write

-B12  22 2 2

A'8"z i 'ii ii)2 in z  i
i= i in+ i  n+2

where the equalities hold if

C ii=O i*j; ci=Xi i=1,...,n cii=s i=n+1,...,m (A.5)

By inserting (A.5) in (A.4) we readily obtain (A.3).

APPENDIX B: A RECURSIVE QR ALGORITHM FOR SOLVING (6)

Let us rewrite equation (6) as

Lm am =  (B.l);L ;

where

32
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1/2 = -I mt tT (B.2)
L m .t ,

t=1

1= t (t)y(t) (B.3)Pm t4i Zg()Y

Let L be factored as

L = 0 mTm (B.4)

where

m  = An orthogonal matrix (B.5)

Tm = An upper triangular matrix (B.6)

Then e can be computed by back-substitution from

T

T mem =0m I (8.7)

Consider now the situation for (r+e1). Determine first and 3 in

.- i-/2 (B.8)

and then

Lm+i = -/ R = (B.9)m+ n+1 m+1 yTJ

We have

m Tml
L = (B.10)

So the problem of factorizing L reduces to the factorization of

m+ 33



In this last matrix only the last row yT needed to be made zero. The

. computations needed are clearly simpler than if the matrix would have been

full. Let 0m+1 be an orthogonal matrix such that

Tm+[ = triangular T T+ 1  (B.11)

or,

m

L jm+1 O0m+I T M+l -q"+1 Tm+" (B.12)

1 m+l

Finally, we have

NT
Xm+= = S m+ t__ zm(tl*(t) = L = (B.13)

- The estimate ;m+1 is computed from

T iFT0 0 (B.14)T~m+1 8m+=Om+1 gm+l = Om+1 (0 1.-

or,

. -

T *+le + 0m+1 (B.15)

.5

2.r'.

• ,'-
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Petre Stoica, Benjamin Friedlander and Torsten Soderstrom
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ABSTRACT

A three-step approximate maximum likelihood method for ARMA spectral

estimation is derived, based on an idea due to Walker. The asymptotic

properties of the proposed estimator are investigated and an exolicit

aal. expression for its asymptotic covariance matrix is presented. The estimator

provides the asymptotic accuracy of a maximum likelihood technique, at a

modest computational cost.
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N 1. INTRODUCTION

Autoregressive moving-average (ARMA) spectral estimation is a topic of

considerable interest in engineering, econometrics, biometrics, statistics and
other areas [1]-[81, [161-[221. Many different methods have been proposed for

estimating the ARMA spectrum, including: (i) Optimization-based procedures

such as the maximum likelihood (ML) method and various nonlinear least-squares

_ techniques [1],[3],j4],8],[21),[22]. These methods tend to be

computationally intensive and have inherent difficulties due to possible

convergence to local minima. (ii) Techniques based on the Yule-Walker method
and its many variations [1],[5]-[71,E121,[13], [23]-[25]. These methods

involve the solution of a linear set of equations and do not suffer from

convergence to false minima. However, the accuracy of the estimates may he
poor unless special measures are taken, such as increasing the number of

equations r7l,[121, increasing the order of the model [51-[71 or choosing an
optimal weighting matrix [231-[25].

In this paper we develop an estimation technique which combines the

computational simplicity of the Yule-Walker based methods with the accuracy of

ML techniques. The proposed estimator is based on an idea due to Walker [10],

[111, involving large-sample approximate ML estimation of the covarlances of

the observed ARMA process. These covariance estimates are then used in a

Yule-Walker based procedure to obtain approximate i_ estimates of the ARMA

spectral parameters.

The spectral estimation method proposed here is more general than the
related method in [11] (See also [9), 0], [281). Walker considered the

estimation of correlation coefficients instead of covariances and his results
can not be used in a straightforward manner for ARMA spectrum estimation. We
introduce here an estimation technique based on a maximum likelihood approach

similar to, but simpler than, the approach used in [111 (see also [33]). A

large-sample M L method is introducedAnd its accuracy properties are

established in a general setting. This general analysis is believed to be

interesting in its own right, and could be used to obtain large-sample ML

estimates for various estiation problem besides the one considered here (see

[251). The ARMA spectral estimator derived here is shown to be asymptotically

1._



efficient. The proof of its efficiency is a key contribution of this paper.

The outline of the paper is as follows: In section 2 we present the

spectral model considered in this paper and discuss some alternative

. parametrizatlons. A large sample approximate solution to a qeneral maximum

likelihood estimation problem is derived in section 3 and its accuracy

properties are discussed. In section 4 we specialize this approximate ML

Kapproach to the ARMA spectral estimation problem. A specific estimation

algorithm is proposed. The asymptotic accuracy prooerties of the proposed

C . estimator are discussed in section 5, and its asymptotic error covariance Is

compared to the Cramer-Rao lower bound in section 6.

2. THE SPECTRAL MODEL

L4 Consider the following ARMA process of order (na,nc)

A(q" ) y(t) = C(q" ) e(t) , (2.1)

where

2
e(t) = white noise process with zero mean and variance 2

-1 -1 -na
A(q ) = 1 + alq 1 + + Ra q

-1 -1 -nc

C(q ) = 1 + c1 q 1 ... + c nc ,

q = unit delay operator (qly(t)-y(t-l)).

The following standard assumptions are made:
.4

Al: A(z) • C(z) = 0 => Izi > 1

In other words, the ARMA representation (2.1) is stable and invertible. This

Is not a restrictive assumption, cf. the spectral factorization theorem

[29]. We note, however, that there are some cases of interest where Al does
not hold. For example, the sinusoids-In-noise process can be described by an

ARMA model (2.1) with A(z) - C(z) and A(z) = 0 => IzI 1 , []-[3]. As we

2
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shall explain later, the method of this paper does not extend to such

"degenerate" ARMA processes.

A2: a * c * 0 and (A(z), C(z)} are coprime polynomials.
'na nc"

In other words, (na,nc) are the minimal orders of the ARMA model (2.1). In

the following we assume for simplicity that (na,nc) are given.

Next we introduce the following notation:

rk= E(y(t) y(t-k)} = the covariance of y(t) at lao k, (2.2a)

O(z) r k zk= the spectral density of y(t). (2.2b)

In (2.2) E(.} denotes the expectation operator and z is a complex variable.

It is well known that

(Z) = 2 C~zC * (2.3)
A(z)A(z )

2
Thus, O(z) could be parametrized via (ai}, (cj} and x . The statistically
efficient estimation of these parameters is not an easy task (even though

asymptotically efficient estimates of (ai} can be obtained by using only

linear operations [23]).

In this paper we parametrize *(z) by the covariances

frk , k-O,...,na+nc} . These covariances uniquely define O(z) . The

sequence (rk} satisfies the well-known Yule-Walker equations:

rk + a 1rk-I + + na r kna 0 , k > nc + 1. (2.4)

Introduce the notation
-1-1na na

b 4 EIA(q-)y(t) A=- a n
bk A(q)y(tk)} = jL! ai aj rk+ji (2.5)

where a0 -- I It then readily follows from (2.1), (2.3) and (.5) that

3
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rc bk zk

(z) k=-nc (2.6)
A(z)A(z-)

Note that the numerator of (2.6) is a function of {rk, k=O,...,na+nc} . Next

note that the coefficients {a, i=l,...,naj can be uniquely determined from

{rk, k=O,...,nancl by using (2.4). This is possible since under the

assumptions Al and A2 the matrix

rnc rnc+i-na

r! !i R - rnc  .. rnc+2-na (2.7)

r nc+na-1 
rnc J

arising from the system of equations (2.4), is nonsingular [111,[231. This

concludes the proof that (z) can be uniquely parametrized by the set of

covariances

S= [rO, r1  .. r 3 • (2.8)-. ]. " na+nc

Another parametrization of (z) was considered by Walker [111 and Cadzow

[123. Walker parametrized (z) by

(.ro, a ... anal (2.9)

For na 4 2nc + 1 it can be easily shoun that (z) can be expressed as a

function of the parameters in (2.9). For na > 2nc + 1, however, this is no
longer that obvious. Walker [11] gave a formula expressing (z) as a

function of (2.9), which appears to be in error. The simplicity of the

parametrization of ;(z) via (2.8) was one of the reasons for preferring (2.8)

to (2.9).

The parametrization of *(z) used by Cadzow [123 (see also [133) is shown

in [33, Appendix D] to be a special case of (2.9), and is valid only for

nc na (compared to the constraint na 2nc + 1 mentioned above). Due to

A 4



this constraint it cannot be used for arbitrary ARMA processes.

Finally note that replacing Irk, k=0,...,na+nc} in (2.4) - (2.6) by some

(consistent) estimate will produce a (consistent) estimate of the spectral

density, which is not guaranteed to be nonnegative on the unit circle. The

same is true when using (2.9) to parametrize 0(z) . This problem is

discussed in more detail in [30][311, where a remedy is proposed.

3. A MAXIMUM LIKELIHOOD ESTIMATION PROBLEM AND ITS LARGE-SAMPLE SOLUTION

In the next section we will discuss an approximate ML method for

estimating the covariances rk , k=O ,..., na+nc} characterizing the ARMA

process (2.1). In this section we present in a general setting the basic
ideas behind that method. As was mentioned earlier, our approach follows that

of Walker [11], who parametrized the ARMA process via (2.9). To estimate these

parameters (more precisely, the parameters rl/ro,... ,rnc/ro,ais,... ,a )
he considered a more complicated approach than the one presented here. We

formalized the basic ideas behind Walker's approach in [33, Appendix EL. We

note that the approaches presented in this section and in [33, Appendix El may

be useful in deriving new estimators for other estimation problems besides the

one treated here, see e.g. [25].

Let X be a random m-vector which is completely determined from the

* ~.available N data samples. Let a denote the ne-vector of unknown parameters

to be estimated. Assume that for N . - the distribution of X is completely
determined by a . Furthermore, assume that

din
/iR (X-X) V; . V(O,W) (3.1a)

where

X. , (3.lb)

and where the covariance matrix W (assumed to be nonsingular) may depend on

a .Finally, assume that an estimate W of W, which is such that

5



lOW . 0(I/1W) , can be calculated from the available data. Under these

conditions we will derive a simple large sample approximate ML estimate of
a .

Since we consider the large-sample case, assumption (3.1a) is not too

restrictive. Many statistics have an asymptotically Gaussian distribution

P according to various central limit theorems. The choice of X so as to fulfil

(3.1b) is the critical point in applying the approach of this section to a

specific estimation problem.

The asymptotic log-likelihood function of X is given by

L(a) =- ln2r 1n Ne T- -

2 2
$4..L8)

= - 2x l n det W - (X-x')Tw (x-X) • (3.2)

The ML estimate of 9 obtained from a "sample" X drawn from the asymptotic

distribution (3.1) is, therefore, the solution of the following equation

aL(e) 1 a
ae 2ae[In det W1 + N[Ine, O1j XX)

., )~T aw" -
(x-Xjj aW1 (X-X)

N
2 0, (3.3)

where 9 is the i-th component of a , and where I denotes the

no x no unity matrix. Let us assume that (3.3) has a solution with respect

to o , say o . Under certain regularity conditions the ML estimate is

consistent and Ia - 91 - 0(1/VIT) . (We denote both the true and the unknown

tWe will use throughout the paper the notation O(e) to denote a random

variable with standard deviation Ke, where e is sufficiently small and where
K is a (finite) constant independent of E . An estimate W satisfying

S l-wi = 0(1/v') is sometimes called "root N consistent."

* .,6
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parameter vectors by the same symbol a ). Determination of e will in

general be a highly intractable problem. In the following we derive an

approximation of order I/N of a . For simplicity we assume that m <
However, similar results hold if m * and m/N 0 (as mN -) at an

"appropriate rate." The rate at which m should tend to infinity is not easy

to determine, and will be problem dependent [23]-[24][37].

For N large enough it follows from (3.1) that

S x-13]= (x-0,)+ [ 0 o( ).

Thus we can rewrite (3.3) as,

I ) OWX x + 0(1/N) - 0 . (3.4)

O

Next we partition W and X as

L12 22 J (3.o)

ne

v [x] ne

A standard result on the inverse of partitioned matrices gives

1 1011-1 T -1 ww'1W W + .WWWWW (3.6)

It folw from (.)36)that an asymptotic approximation of order 1/11 of

7
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a - x - W W z • (3.7)
12 22

Now a is not directly implementable since W12 and W22 will generally depend
on i . However, since z = OITW ) , see (3.1), we can replace W in
(3.7) by their consistent estimates WIj without affecting the order of the

approximation. We can summarize the discussion above by the following lemma.

Lemma 3.1

A

Consider a given by

=x - W12 W (3.8)

where x, W12, W22 and z are defined by (3.5). Then is a simple large-

sample approximate (of order 1/N) solution of (3.3).

Since le-el = 0(1/N), ; has for N . the same distribution as the ML

estimate a . In view of the asymptotic (for m - ) efficiency of the ML
estimate 8 we expect that under certain regularity conditions the covariance

matrix of the distribution of 9 will tend to the Cramer-Rao lower bound as
m + - . However this is only a conjecture. To prove it in specific cases is

a challenging problem; see section 6 for the analysis of a particular case.

In the following we establish some general accuracy properties of •
KIt follows from (3.1), (3.7) and (3.8) that

dist
, T (a-a) N--- (0, P ) , (3.9a)

where

p -1 T
Pm = W'W2W22 W 2  (3.9b)

and where, for the convenience of the discussion, we stress by notation the

dependence of the covariance matrix (3.9b) on m.

The estimation error (e-a) can be interpreted as being the residuals of

8



the asymptotic regression of x-e on z. Consider the following regression

problem: determine M such that

Q(M) _4 NE{[(x-e)-Mz][(x-e)-Mz]T} Q()

for any ne x (m-ne) matrix M. Since we have

Q(M) T M-W1W1
12 122 -22(M-W12W22) * W12W22 W12) (3.11)

and ince-i T
and since W 1-W1 2W22 W12 and W22 are positive definite matrices, it follows

that

M= W12W22  (3.12)
and

Q(M = Pm' (3.13)

According to the interpretation above we expect that the accuracy will

increase when m increases since the number of "degrees of freedom" in the

regression problem (3.10) increases with m. It can in fact be shown by

straightforward algebraic calculations that

Pi> P- , for m > . (3.14)

We state this result in the following theorem.

Theorem 3.1. Consider the matrices P and P- defined by (3.9b) under the
m m

assumption that W22 is invertible. Assume that

z =,Inne ,[ lz, (3.15)

where z corresponds to Pm and z to P- Then the order relation (3.14)m m
holds true.

Proof: The nested structure (3.15) induces a similar structure on the

matrices W12 and W22, say

9
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"12 = [W12 ' sl] I

and

W22 T S

Thus

P_= W11-W12 W22 W12 = W11 - 1 1
mT

Pm (S-W12 W22  )s(s1 " 112 22 2)

Since W is positive definite by assumption, S must also be positive
definite and the assertion of the theorem follows. We note from (3.16) that

the equality

P- aP , (3.17)

is equivalent to

1 12 22 S (3.18)

Since Pm > Pnl > 0 for all m, it follows that the sequence of matrices

(P will have a limit when m . ,which we denote by P . According to
m 00

the interpretation (3.13) of P the "rate of convergence" of Pm to P will

be faster than that of the covariance matrix corresoonding to any other

10



estimator of e of the form x + Mz, for some matrix M. Also, according to the

discussion following (3.8) we expect that

P PCR' (3.19)

where PCR denotes the asymptotic Cramer-Rao lower bound for consistent

estimators of a . This conjecture is analyzed for the specific case of the

ARMA estimation problem in section 6.

Finally, note that the (consistent) estimate e , (3.8), could be

introduced independently of the ML interpretation. For example, it could be

introduced using the (asymptotic) regression interpretation (3.10)-(3.13).

The accuracy properties proven above ((3.9),(3.13) and (3.14)) do not depend

on the ML interpretation of ; . The property (3.19) becomes, however,

apparent only in relation to such an interpretation. Yet this property has to

be proven in each particular case being considered. The aDolication of the

maximum likelihood principle in this section is non-standard. The likelihood

function used here is valid only for N - Moreover, it is not known

whether the likelihood function is valid for m + - . Thus, we can not rely

on the standard properties of the ML estimate to prove (3.19). Note that for

the specific ARMA problem considered in the next section we show that (3.19)

holds for Gaussian data, but not necessarily for other distributions. In view

of the discussion above, this should not be viewed as a contradiction to the

M.-based Interpretation of e

4. LARGE-SAMPLE MAXIMUM LIKELIHOOD ARMA SPECTRAL ESTIMATION

In this section we consider the specific problem of estimating the

spectral density of an ARMA process (2.1). This problem reduces to estimating
the covariance parameters 9 r .... , r of the ARMA process, see

r0, - na+nc
(2.4) - (2.6). We will use the approximate ML approach of the previous

section to estimate e from a sample {y(1),...,y(N)} . We define the

unbiased sample covariances

N-k

Z y(t) y(t+k) k = 0,1,2,...,
r N-k (4.1)

rk
_k1



Next we introduce a consistent estimate of the AR parameters (a1 } obtained by

the least-squares solution of the following overdetermined Yule-Walker system .r

of equations

c . . . . nc+l-na c+l

a ] - , K > na+nc, (4.2)

where a = [a" .. a T . That a given by (4.2) is a consistent estimate of

a = Cal, ... , anal follows readily from (2.4) and from the convergence of

the sample covariances to the theoretical covariances (rk} [14],[23].

Note that the sample covariance matrix in (4.2) has full rank, at least for

sufficiently large N [231. It may be advisable to take K in (4.2) to be much

*. larger than na+nc in order to improve the accuracy of a [7]. It is not

generally true that increasing K improves the accuracy of a [231. However,

extensive simulations [73,[121 have shown that this is in general the case

when the sequence {Irk1J is decreasing slowly.

Next we define the statistic X which will constitute the "data" for our

ML estimation problem:

X= x = L z = (4.3a)

L_ na+nc -j Lt -na-nc-l -l

where

xI "i = i=O,...,na+nc ,

na na (4.3b)
zk t=0 ij 1=0 at aj, r nc+na+k-i-i I k=l,...,m-na-nc-l

We assume that m > na + nc + 1. The specific form above of the vector z leads

to a relatively simple expression for the covariance matrix of the asymptotic

distribution of X (see below). Other choices of z are possible but we bel ieve

12
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(4.3b) is the most convenient choice. This choice of z was introduced by w
Walker [11).

It is shown in Appendix A that X in (4.3) is asymptotically normally
distributed, i.e.,

j (X_7) N...- mA(,W) ,(4.4a)

where rr

X r a~nc(4.4b)

andL J L J

I wT W ,no 4na +nc +1
I12 221

Ew I =Ej [(t-i) +Y(t+i )]v(t-j )I l j 0, O. ..no-1 ,(4.4c)

v(t) - X2 1 e(t),

i i nc k 2 (4.4d).,-n
=the coefficient of I n [ kn b k Z- (4.4d).m-

[W I E. 2(q )Lv(t+na+nc-j) + (t~na+nc+jflv(t-k)}
12 jk2EA( (4.4e)

a ak+j + ctk-j jO,.ne1 k=..re

L k
=the coefficient of zs in the long division of z-(nc+na) k= nc

s A 2 (Z-1

It is not difficult to see that V

13



[W2] =0 for k > nc-na+j . (4.4f)12 jk

This implies that [W12]jk = 0 for k > 2nc. Note also that W22 is a banded
Toeplitz matrix with the band width equal to 2nc + 1.

In (4.4d) and (4.4e) we have indicated simple ways for evaluating the
covariance matrices W12 and W22. Note that only these two matrices are of

interest in calculating the estimate, cf. (3.7). The matrices

W and W22 depend only on (ai, i=1, ... , na} and
(rk, k=O,...,na+nc} .Thus, consistent estimates of W12 and W22 can be

Xobtained by using in (4.4) the consistent estimates of (ai} and {rk} given

by (4.1) and (4.2).

It follows from the discussion above that X (4.3), satisfies the basic

conditions used to develop the approximate ML approach of section 3. Thus, a
large-sample approximation of the ML estimate of 9 is given by (lemma 3.1),

"1  (4.5)--= x - W12 W22z

The W22 matrix is positive definite for any value of m (finite or infinite)

[27][33]. More precisely, it can be shown that

Xmin (W22 ) X 4 inf1C(eiini4 (4.6)
W

0 >max 22(W X 4 supIC(ein )14 (4.7)

-where xm (W2 ) and x (W2) are the smallest and largest elgenvalues of the
mi 22 max 22

matrix W22 , respectively. The equalities in both (4.6) and (4.7) hold in

the limit as m . - £33, Appendix F]. Due to assumption Al we have

W > 0 for all m. Note, however, that if C(z) has zeroes near the unit
22

circle then the condition number of W 22.will be large for large va-ies of

m. A similar situation will occur for W Some numerical problems may
W22

arise in such a case in the implementation of the estimator defined by (4.5).

The algorithm for determining a large-sample ML estimate of O(z) based

on (4.5) can be summarized as follows:
A'

14
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Step 1. Compute the sample covariances {r (4.1), and the initial estimate

a (4.2).

Step 2 Use {rk}, a in (2.5) to obtain initial estimates (&k} and insert

them in (4.3) and (4.4) to compute x, z, W12 and W2 2 ' Compute improved

estimates {rk,k=0, ... , na+nc} of the covariances by using (4.5).

Step 3. Use {rk, k=O, ... , na+nc} in (2.4) with kznc+1,...,nc+na, to obtain
an improved estimate a of the AR parameters. Then use a and

{rk, k=O, ... , na+nc} in (2.6) to obtain the estimate *(z) of the ARMA

spectral density.

The calculations in steps 2 and 3 of the above algorithm can be repeated

using the improved estimates {ri} and fail obtained in step 3. For large N

this will have only a slight effect on the estimates. However, in the small

and medium sample cases the iteration of steps 2 and 3 may have a beneficial

effect on estimation accuracy.

The computational aspects related to the algorithm above are discussed in

detail in [32). Here we note only that the facts that W22 is a banded
positive definite matrix and that W12 has few non-zero elements can be

exploited to get a computationally efficient algorithm (requiring proportional

to m arithmetic operations) for implementing steps 2-3.

Some general accuracy properties of the estimates of the type given in

equation (4.5) have been derived in section 3. Analogous properties clearly

hold for the estimates a and *(z) obtained by the algorithm above. A more

detailed accuracy analysis of e and a will be presented later.

We conclude this section by noting that Walker [11], who used a somewhat
more cumbersome ML approach [33, Appendix El arrived at estimates of the

correlations Irk/rO, k=, ... , nc} and of the AR parameters {ai } that are

similar to ours. Since Walker considered the estimation of {rk/r0} instead

of irkl, our estimates and those of Walker cannot be easily compared.

15



EW 12 ik = 0 for k > nc-na+j (4.4f)

This implies that [W1 2 ]jk = 0 for k > 2nc. Note also that W2 2 is a banded

Toeplitz matrix with the band width equal to 2nc + 1.

In (4.4d) and (4.4e) we have indicated simple ways for evaluating the

covariance matrices W12 and W2 2 . Note that only these two matrices are of

interest in calculating the estimate, cf. (3.7). The matrices

W12 and W22 depend only on {ai, im1, ..., na} and

{rk , k=O,...,na+nc} •Thus, consistent estimates of W12 and '22 can e

obtained by using in (4.4) the consistent estimates of (ai:, and - 1'e

by (4.1) and (4.2).

It follows from the discussion above that X (4.3), satisfies t~'e u

conditions used to develop the approximate ML approach of sectlon 3 "u.

large-sample approximation of the ML estimate of 9 is given by (lem1

6 Z x - W12 W22

The W2 2 matrix is positive definite for any value of m (finite or infinite)

r27][33]. More precisely, it can be shown that

Lmin(W2(W ) >X4ifCew) (4.6)

( X4 nfCei) 14 (47)
Xmax 22 spCe)

WA

where x (W ) and x (W ) are the smallest and largest elgenvalues of the
min 22 max 22

* matrix W22 , respectively. The equalities in both (4.6) and (4.7) hold in

the limit as m . [33, Appendix Fl. Due to assumption Al we have

S22 > 0 for all m. Note, however, that if C(z) has zeroes near the unit

circle then the condition number of W 2 .will be large for large values of

m. A similar situation will occur for W Some numerical problems may

arise in such a case in the implementation of the estimator defined by (4.5).

The algorithm for determining a large-sample ML estimate of *(z) based

on (4.5) can be summarized as follows:

14
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Step 1. Compute the sample covariances (rk} (4.1), and the initial estimate

a (4.2).
Step 2 Use {rk}, in (2.5) to obtain initial estimates (bkl and insert

them in (4.3) and (4.4) to compute x, z, W12 and W22 Compute improved

estimates {rk,k=O, ..., na+nc} of the covariances by using (4.5).

Step 3. Use (rk, k=O, ... , na+nc} in (2.4) with k=nc+1,...,nc+na, to obtain

an improved estimate a of the AR parameters. Then use a and ,I

{rk, k=O, ..., na+nc} in (2.6) to obtain the estimate O(z) of the ARMA

spectral density.

The calculations in steps 2 and 3 of the above algorithm can be repeated

using the improved estimates {ri} and fai} obtained in step 3. For large N

this will have only a slight effect on the estimates. However, in the small

and medium sample cases the iteration of steps 2 and 3 may have a beneficial

effect on estimation accuracy.

The computational aspects related to the algorithm above are discussed in

detail in [32]. Here we note only that the facts that W22 is a handed

positive definite matrix and that W12 has few non-zero elements can be

exploited to get a computationally efficient algorithm (requiring proportional

to m arithmetic operations) for implementing steps 2-3.

Some general accuracy properties of the estimates of the type given in

equation (4.5) have been derived in section 3. Analogous properties clearly

hold for the estimates a and *(z) obtained by the algorithm above. A more

detailed accuracy analysis of e and a will be presented later.

We conclude this section by noting that Walker [11], who used a somewhat

more cumbersome ML approach [33, Appendix El arrived at estimates of the

correlations Irk/rO, k=1, ..., nc} and of the AR parameters (ai} that are
similar to ours. Since Walker considered the estimation of {rk/rOj instead

of [rk}, our estimates and those of Walker cannot be easily compared.

ilEl
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5. ASYMPTOTIC ACCURACY PROPERTIES

In this section we derive explicit expressions for the asymptotic

covariance matrices of ; and a . The asymptotic properties of ^(z) can be

analyzed similarly (pointwise).

It follows from the general analysis in section 3 that as ,4 the

covariance matrix of the normalized estimation error VI(- a), is qiven by

I T'

S-1 T.1
Pm :W 1"i WI2 W22 WI2  (.

where the matrices Wij are defined by (4.4). Furthermore, according to,j

Theorem 3.1 we have

P . P2I for -m >n . (5.2)

m

A consequence of (5.2) is that the sequence of positive definite matrices

(P3} has a limit when m * - ,which we denote P9 . An exolicit expression

for pa is given in the following lena.

Lemma 5.1 Consider the covariance matrix Pe defined by (5.1), (4.4). Then

m
:::" T

P = W11  . (5.3a)

where a is a ne x 2nc matrix whose (ij)-element is given by

Sij = E{C 2(q'l)(e(t-l) + e(t+i)] A2(q1l)

i =O,...,ne-1, j = 1,.. .,2nc

Proof:

Let

3-, 2z( (h0 =1). (5.4).j7 C-- 2 (z) 0

It is shown in [10] that for m the (ij)-elenent of W-1 is given by

a- 16
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1 1 min(i j
L 2 i x r I  hi-r hj-r , I

Thus, we can write
,4,

I im W2 UTu , (5.6a)
- 2 1

where U is the following infinite-dimensional matrix

h0  h 1  h 2  h 3 . .
h h h h

0 1 23* *U : h0  h I  h 2 . . . ..

h (i . (5 6b)

0 J

Since

V(t-1) v(t- e(t-1)u v(t-2) 1 v(t-2) e t-2)
" " C2~C(q A A(q) .Z

the assertion of the lemma readily follows from (4.4e) and (5.1). Note that

the expression in (5.3b) becomes zero if j > 2nc

In practice m cannot be too large. The comoutational burden increases in
proportion to m. Also, m must be only a fraction of the sample size N for

statistical "stability". The rate of convergence of P to its limiting lower
bound p. given by (5.3) is, therefore, of interest. Due to the particular

structure of W (4.4f), the rate of convergence of pr to pa is determined12 m O'n
essentially by the rate at which the left-top 2ncx2nc-block of ,q 1 converges

as m . The rate of convergence of the entries in that block depends

strongly on the location of the zeros of C(z), see (5.4)-(5.6). The closer

these zeros are to the unit circle, the slower is the convergence rate. The

parameters (ai} have a much smaller influence on the convergence rate of
PM via the elements of the non-zero block of W12

17
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V.

We conclude from the discussion above that in the case C(z) has zeros

well inside the unit circle we can get resonably close to the lower bound

p for relatively small values of m. If C(z) has zeros close to the unit
circle we may need to consider much larger values of m. This will be possible

-4

only if we have a long sample at hand; otherwise we cannot attain the maximum

accuracy corresponding to P . Recall also that for m large and C(z) with
zeros close to the unit circle, the 22 matrix is likely to be ill-

conditioned.

Next we turn to the calculation of the asymptotic covariance matrix of

a . We introduce the vector

a a Tr [ .. ,rnna , (5.7)
,r = nc+l nc+na

and the matrix R as defined by (2.7) with (ri} replaced by (ri} . The

estimate a can be written as a function of @ as follows

a a1

We can now state the following result.

Lemma 5.2: Consider the estimate a , (5.8), where {ri} are given by

(4.5). Let Pa denote the asymptotic covariance matrix of /N(a-a) • Thenm
=-I a (Q -- -IT R-T

?, m R I 0 " Q12 w 22 Q12 ) R (5.9)

where W22 is given by (4.4d), R by (2.7), and

EQl1ij = E{A(q- )v(t-i) A(q 1)v(t-j)} , i,j=l,...,na (5.10)

IQ121ij = E{A 2 (q1 ) v(t-i) A(q I) v(t-na-J)} i1,...,na

Furthermore,

~a a
Pm > , for mm . (5.11)

m

18
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Finally, the limit covariance matrix pa = lim pa exists and is given by
-* m

pa = R-1 (Q - r rT)R "T

where

[rl - E{C 2(q- 1) e(t-i 1 e(t-na-j)l , ...., na, (5.12)
A(q ') j=1.. 2nc.

Proof:

See Appendix B.

As stated earlier, our estimate a may differ from Walker's estimate for

finite samples. A careful comparison of Pa with the expression given by

Walker for the covariance matrix of the estimate in [11] shows that they are

identical. Thus, the two estimates have the same asymptotic accuracy.

Note that the first term in (5.9), R-1 QI RT is the covariance matrix

corresponding to the standard Yule-Walker estimate of a (i.e., a obtained

from (4.2) for K = na+nc), see [23]. Thus, the second term in (5.9) shows the

improvement in asymptotic accuracy that results by using {rk} instead of

0rk} in the basic Yule-Walker ecuations.

In the no.,<t section we compare the asymptotic accuracy of our estimates

to the Cramer-Rao lower bound. In the course of the analysis we also obtain
an interesting result relating the covariance matrix of a , to the covariance
matrix of the optimal Yule-Walker estimate recently proposed in [23][24].

5. COMPARISON WITH THE CRAMER-RAO LOWER BOUND

The following conjecture was introduced oreviously:

CM R 
19
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where Pa is given by (5.3) and P3 is the CRLB for the covariance matrix ofany consistent estimator of e . In the sequel we present a proof of (6.1)

for the general ARMA case, using some results presented in [34), [35). The

asymptotic (for N, m -) efficiency of the approximate ML estimators of the

type considered here was conjectured by Walker [11) and later by others

[16][28], but no proof was provided, except in some special cases

[9,[37].Explicit expressions for Ps are known [343[361. However, a direct

algebraic proof of the equivalence between PO in (5.3) and PaR appears to be

difficult. Instead we consider the following result introduced in [351.

Theorem 6.1

Let e be the following estimate of the ARMA parameter vector a (2.8),

e = argmin V(e), (6.2a)

V,) r q , (6.2b)

where

T= Lro-r o , ... , r .- rmi] T , (6.2c)

S - lim N cov{n} (6.2d)
N.-

and where m ) na+nc+l . Define

P lim N cov{a} . (6.3)
m N-

Then, under the Gaussian hypothesis

lim Pm = CR (6.4)

Proof: See [35].

It is also shown in [35] that P is an asymptotic lower bound on the

2covariance matrix of any estimator based on the samole covariances

-. 20
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Next we state and prove the following lemma.

Lemma 6.1:

The estimate ; as defined by (4.5) and the estimate a defined by (6.2a)

are asymptotically equivalent.

Proof: Let

-- ]T (6.5a)

m 1 -... (mna-nc-1

where {Y} are defined by (A.16). Also define

where x is given by (4.3a). Then

7X (6.5c)

where X, n are defined in (4.4b) and (6.2c), and * denotes entries whose

values are not important for this proof. Since the matrix V is nonsingular

and non-random it follows that

V(O) T (X -T )Zw (X-X) (6.6)

where W = lim N cov(X-X) is defined in (4.4) (see also Aopendix A). Note
Nl

that we denot both the true and the unknown parameter vectors by the true

symbol 9 The equality (6.6) holds for all admissible values of 9 Thus

we have

21
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2 T  ' x-xJ - 2[1 01 W 1 (x-X) " (6.7)

Next note that is a root N consistent estimate: -l= O(1//l) (see
~(6.3)). Therefore

(X - l: -- o(1//N) (6.8)

~Furthermore, It follows exactly as in (A.1), (A.2) that

axI [0 36~i ] oI/N)(6 )

36 3

which implies that

iT

78n

(6.9) it follows that satisfies the following equation

AI W'(x - [* ]) + o(.) - 0 (6.11)

Since e is the approximate (of order 1/N) solution of n equation with

identical dominant term (see (3.4)), we conclude that e - e - o(1/NJ , and

the proof is finished.

(610

-,From Lemuma 6.1 we conclude that Pm = Ths"sa iiu
variance estimator in the class of estimators based on m sample covariances
(r o,...,rml} . Furthermore, from theorem 6.1 it follows that

lir = +6  (6.12)

Since ; isthe appro ite (o rde CR )sltono neuainwt

rThus, is an asymptotically (for in, m t h efficient estimator. An

22

4.-I



immediate consequence of this fact is that both a and ;(z) (are

asymptotically efficient estimators. Of less importance is the fact that the

above results provide another way for introducing the estimator ; (as a

large-sample approximation of e ).

In the remaining part of this section we show that pa is equal to the

asymptotic covariance of the optimal YW estimator of a, introduced in [23].

Since the optimal YW estimator is asymptotically efficient [231, this equality

provides an alternative proof of the asymptotic efficiency of a . The

equivalence between the covariance matrices of these two estimators is also
interesting in its own right.

Let us introduce the matrices Rk (k x na) and Sk(k x k), for k > na

[Rk]ij = E{y(t-nc-i)y(t-j)} =l,...,,
• (6.13)

[Skij 2 E[C(q 1)y(t-i)C(q 1)y(t-j)} 
ij 1,...,k ,

and K defined as
rK

, T -1 -
Pk = Rk Sk R) " (6.14)

The inverse matrix in (6.14) exists for any k > na £231.

SThe following result relating Pa to (for a certain k) is essential

in proving that pa = pa
CR

Theorem 6.2: Consider the covariance matrices Pa and Pk defined by (5.9)-

(5.10) and (6.13)-(6.14), resoectively. Let m > na + nc + I . Then

pa (6.15)
m = m-nc-1

Proof: See Appendix C.

. Note that P (k > na) is the asymptotic covariance matrix of the
k23
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optimally weighted overdetermined Yule-Walker estimator (OWOYWE) (or the

asymptotically equivalent optimal IV estimate) recently introduced in [231.

Thus, a given by (5.8) and the OWOYWE of [23] based on m-nc-1 instruments

have the same accuracy, as N +- These two estimates seem, in fact, to be

asymptotically identical; however, in the finite-sample case they will in

general have different values.

The reason for the usefulness of equality (6.15) is that the convergence

of Pk as k + - was studied in detail in [23). In particular it was shown

there that under the Gaussian hypothesis

a

Pk + PCR , as k +- (6.16)

An explicit expression for pCR was also given in £23). The "rate of

convergence" of Pk to paR was also studied in [23] by means of some

numerical examples as well as analytical calculations. The results reported

there on the convergence rate in (6.16) support the statements we already made

in section 5: () the C-parameters have a much stronger influence on the

convergence rate than the A-parameters; (ii) the convergence is slow when

C(z) has zeros close to the unit circle.

7. CONCLUSIONS

We developed a technique for estimating the spectral parameters of an

ARMA process from a set of sample covariances. The proposed algorithm

prov4ides consistent parameter estimates. Explicit expressions were derived

for the asymptotic covariances of the parameter estimates. It was shown that

the estimates of the ARMA parameters obtained by this technique are

asymptotically efficient.

The computational requirements of the proposed technique are of the same

order as those of the modified Yule-Walker estimator. A more detailed

discussion of the computational and implementation aspects of this algorithm

and a numerical performance evaluation will be Dresented in [32).
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APPENDIX A: PROOF OF EQUATION (4.4)

Let us consider the following Taylor series expansion of zk, (4.3b)

(viewed as a function of j ), around a:

na azk(a)z k~a =k + Z I "(s-a s + 0i1/N) ,(A.la)

sk +1 a 5  a-a

where

- na na ,..

Z - 7 aiajrnc+na+kil , k 1 , (A.lb)

1=0 j=o

and

az k(i) na k I
i 2 a > ,(A.lc)

a= 231 ajr(nc+na+k-s),j 1 s A na

According to the Yule-Walker equations (2.4) the derivative (A.lc) is

O(I//N) . It then follows from (A.la) that
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a zk(a) = Zk+ 0(1/N) (A.2)

Thus, the random variables zk and zk have the same -asymptotic behavior, and

in the following calculations we will consider zk instead of zk.

Under the assumptions imposed on the ARMA process (2.1) it is well known

that for any finite k

r 0 r r0
/ITdis, t l(,V (A.3a)

where

IV]j = (r r i+ rr .) (A.3b)i 2. -= t r+ji ~+

see [14],[15]. Since (x1} , (4.3b), and zk , (A.lb), are linear

combinations of (rj}, the convergence in distribution of X, (4.3), to a

Gaussian distribution follows from (A.3). It remains to verify the expression

of the covariance matrix of the limiting distribution, given in (4.4). Note

that formulae analogous to (4.4) have been given, without any proof, in [11].

Proof of (4.4c)

Let

A rsrs+k (A.4)
- =- r

Note from (A.3) that

[Wll1ij =V]ii = j-i + Oj+i (A.5)

Mow,
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b:.4-

, z k -k

k k = rs  7 r Z
ks ke s+k

- ( . rszSJ J r z'P) - (z) (A.6)S=- P=- P "

Thus, 9k is equal to the covariance at lag k of the process

v(t) = 1 - e(t) (A.7)
A2 (q"1 )

and the proof of (4.4c) is concluded.

Note that to compute the estimate (4.5) we do not need to consistently

estimate W11 . However, a need for calculating W11 could arise if we want ',

to compute the covariance matrix pe , (5.1), or its limit as m
m

(5.3). To evaluate the entries of W1 1 we cannot proceed by "long division"

as we did for W12 and W , see (4.4). The reason is that the coefficient

of zk in the infinite division of 02(z ) cannot be computed without
truncation errors. Instead, we can calculate k as

4 21 2.-
C2 (z)C2 (z-) k dz _ dz (A8)

k =  ri A2(zA2 (z- , Z ;T' (z)zk (

by using an exact algorithm for evaluating complex integrals given in [261.

Proof of (4.4d)

We have that, cf. (A.2) and (A.5)

na na na na
[2] = kZ_ Z Z akapa as lira NE{; -~n

[O =, na+nc+i-k-p2 -k-o p -- o X o s .

"rna+nc+i-k-p3 ('na+nc+j -- s rna+nc+j -t-s)l =

na na na na~akapazas[ k + -'4Z -i+k p-e-s .
k0 PO z=O0 s
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1-

+ 2na+2nc+i+j-k-P-z-s ]  (A.9)

Let us denote the two terms in (A.9) by T and T . According to the
interpretation (A.7) of k we can write

na
T a E= aka pa a sv(t-i-z-s) • v(t-j-k-p)} =

k , , J = ( A .1 0 )2~~~~ p1 2 1
= E{A 2(q4 )v(t-i) A2(q- )v(t-j)l ,

and

na
T2 El a ap a as v(t-2na-2nc) v(t+i+j-k-p-L-s)l -

k,p,z,s=0<2 -1A 2 -1

E{v(t-2na-2nc) x AA(q- )C 2(q )e(t+i+j)} = 0, for i,1 1 . (A.11)

We thus get

2 -1 2 -1..; [W22]Ij =EtA2( " )  v t l ( v (t v~ -) (A.12)

which is the expression given in (4.4d). To complete the proof of (4.4d) we
note that CW 22]kj can also be written as

= 4 (z) 2z-1)zk-j dz

1 0 nc -s2kidz
7 Zb ]z (A.13)

-- nc

Proof of (4.4e)
-4

SIt follows from (A.2), (A.5) and (A.7) that

na na
[W12] = 12 akap lim ME{(7i-ri )(na+nc+j-k-p-

na narna!oakapkpqtna n=o"na+nc+J-k-o)i k PL0 na~-l-k-p ona+nc~j +!-k-p ]

na
m = E' Z ak a pV(t-i-k-p)v(t-na-nc-j)

k,p=O
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+ v(t+i-k-p)v(t-na-nc-j)]} -

A2  ( - 1,
= EA(q )v(t-i)+v(t+i)]v(t-na-nc-j)} ,

which can also be written as

4 ~.t2 2 -.1
[W = C (z)C (z z-(na+nc)rzk-i + z-(k+j ]dz

nc
n b-s,2(na+nc)

-i s=-nc [zk-j + z-(k+j)idz
27 2i A2() LzZ

APPENDIX B: PROOF OF LEMMA 5.2

Let

Then

T a 9 T
Po D PM T (B.2)

where p9 is given by (5.1). Some straightforward calculations give

_

* -1. -1 . I-
{ R -Ri -R - -" i-- a ; J . (B.3)

ark 9=9 ark ark 8=8 ark I=6

Thus, D =-R- 1 G ,where

G i-4jR a + (B.4)

The (j,k) element of G is given by
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na

Ljk Z ~ ai rnc+jil
ar k i =0ee

na

1=0 dnc+jilk = ~ ++k nc+j -k k O

a 6 ak - (B.5)

1= nc+j-l,O n~

for j=1,...,na, k 0,...,na+nc.

In (B.5) we have set a k = 0 for k > na and k < 0, and a. 0 1

Next we evaluate the matrix products GW 12 and GW 11G Twhich appear in
(B.2). The (ij) element of GW 12 is given by, cf. (4.4e),

na+nc 2 -1
L'GWi 2 1  E= G GA (q )i(v(t-k) + v(t4k)])v(t-na-nc-j)l

where cf. (B.5),

na+nc na+nc na+nc
G. t-)Y~~ = 7 a ~v(t-k) + acik v(t+k)=

M-0 k=-na-nc k=-na-nc

na na
= a v(t-s~nc+i) + Ia Sv(t~s-nc-i)=

=A(q- )v(t+nc+i) + A(q) v(t-nc-i)

It follows that

FGW ~EjxA(q- )C 2(q- )e(t+nc+i)v(t-na-nc-j)i

+E[A 2(q -1)v(t-nc-i)A(q -1)v(t-na-nc-j)}

=EjA 2(q- )v(t-i)A(q 1)v(t-na-j)t (B.7)
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The matrix GWIIG T could be evaluated by similar calculations. However, it is11GT

more convenient to note that GW1 G is the covariance matrix of Ra + r In

effect the following equality holds:

Ra + r = G(e-e) • (B.8)G.IT

The (ij) element of GW11G is, therefore, given by, cf. (4.4c) and (8.8),

na na - I
[GW 11GT] ij = lim N E{ I=ak rnc+ik}.{ pZO ap rnc+j.p}

na na
= I akap[W ll]nc+ik,nc+j-

k=0 p=0 1 nikncjp

na na
= Z a aka E{[v(t-nc-i+k) + v(t+nc+i-k)].[v(t-nc-j+p]l} . (B.9)k=O p--O k

Denote the two terms in (B.9) by TI and TII

na na
T= I akaP Ejv(t-i-p)v(t-j-k)}=

k1 k O p

- EtA(q 1)v(t-i)A(q v(t-j)} (B. 10)

na na
T kII = Z aka p E~v(t-j)v(t+2nc+i-k-p)l =

, k=O P=O

= Etv(t-j)A 2 (q1 )v(t+2nc+i)} = Eiv(t-J).xC 2(q'1)e(t+2nc+i)} = 0

Thus, we have shown that I

[GW11G T]ij = E{A(q )v(t-i)A(q'1)v(t-j), i,j-l,...,na (B.11)

The expression (5.9), (5.10) of pm now readily follows from (5.1), (B.2),

(B.3), (B.7) and (B.11). The inequality (5.11) is a simple consequence of

(5.2) and (B.2). Finally, the expression of pa in (5.12) follows from (5.3),

(3.2), (8.3), (8.11), the relation r = G u and some calculations similar to

(8.6) - (B.7).
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APPENDIX C: PROOF OF THEOREM 6.1

Let H denote the following nonsingular (m-nc-1) x (m-nc-1) matrix

0 1 0na
H = ana "' 1 - - -re'n (C.1)

ana a1 1 I

Recall that ne = na + nc + 1. For 1 4 k 4 m - no and 1 4 j 4 na we have

'4',

[ana, a1, 1, 0, . . 0., 0] E Y(t-j)' -

na
- E[ Z ana-i y(t-nc-k-i)y(t-j)} =

0na (C.2)
na

-
" t Z a y(t-nc-k-na)y(t-j-p)l=

p=O P

- Ely(t-nc-na-k)C(q' )e(t-j)} = 0

It follows that

H R (C.3)
rn-nc-i 0I

with R = Rna defined by (2.7).

Next we introduce the reciprocal polynomial of A(z)

4 z -i na-i naA(z) - zaA(z = a + aa z + ... + a lz + z (C.4)
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V.

Then, 6

-y(t-1)

H= ~A(q )y(t-1)

LA (q- )y(t-m+ne)-
which im~plies

y(t-1)

y(t-na)

HSm-ncIH T = x2 E(C(q 1) A (*q:1;y~t:1)

LA (q- )y(t-m+ne)

C(q- )[y(t-1),...,y(t-na) A*(q1 )y(t-1),..., A*(q- )y(t-m+ne)ll. (C.5)

Next note that

Ejt A( )Y(t-i)C(q- )y(t-j)

= E{ Ia a Ck )y(t-i-k)C(q- )y(t-j)} (C.6)
k=O n-

= E{ na a C q)y(t-i-na)C(q- I Wt-j-p)l

= E[C(q- )y(t-i-na)A(q- )C(q- )y(t-j)}

and similarly,

E(C(q- )A*(q- )y(t-i)C(q- )A*(a- )y(t-j)}
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Ej na na - C7

= Ejj afl..afl..C(q )y(t-i-k)C(q'1)y(t-j-p)} C7

naO POa 1akn

= Eln na~ C(q1l)y(t-i-t)C(q- )Y(t-J-s)l I=W

- E{A(q- )C(q- )y(t-i)A(q- )C(q- )y(t-j)}

By comparing with the definitions of Q~1  1  and W (see (5.10) and (4.4d))
we get

H F T 1 1. (C.8)
rn-nc-i T W

L12 22_j

*It follows from (C.5) and (C.3) and (5.9) that

T H Tui(H S H)H R -1
rn-c- 1 m-nc-1~ mnc-i nnci

{CRT, 0][

L Q-1 Wi 0 2j V0
-1 1iT -T aR (Qu i2 ~ Q ) R Pm

which concludes the proof.
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APPENDIX D: A PARAMETRIZATION OF THE SPECTRAL DENSITY

FUNCTION OF AN ARMA PROCESS

From the Yule-Walker equations, (2.4) it follows that ( a 1)

- na k na -- (k-
a r k - -r

k=1 1=0inck-~ j.0J kOn

na na nc-jSZnC " a' z iC r = z n c  Zaz-J rzprz]

J-0 J p=nc+-j p J=0 J L P p p

In establishing the last equality in (D.1) we tacitly assumed that

nc > na . (D.2)

When (0.2) does not hold, the derivation needs to be modified and the

following expressions become more complicated. Let

(z) -4 =Ir rp~ (0.3)

p=1 P

Then

*(z) = r0 + ;(z) + ;(z
" ) . (0.4)

From (0.1) it follows thati-:

na nc-J
A(z" ) 0(z) = J a1 p rZ p

na nc k nc nc
a a 1 J rk'j Z = 1 rkZ k + alr z -k+.

1=0 kxj +1 k=1 k=21k-
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nc -k -2
+kra+lnarkna z (r1 )z + (r2+a1r1)z +

** r+ + a 1rnc-I + + r znC (D.5)
nc 1nc-1+ +na nc-na

Defining

min(k-l,na)! Pk=  j aj r ,- k=l,...,nc ,(0.6) L

j =0 k"

we get

nc -k

- (z) = ki(D.7)

A(z" )

The spectral density 0(z) is, therefore, completely determined by

9' = [ro, ... , rnc; ael ... , anal , (D.8)

cf. (D.4)-(D.7). The parametrization via (D.8) of an ARMA process was used by

Walker C11]. Cadzow [12] presented the explicit dependence of O(z) on (D.8)

as in (D.4), (D.6) and (D.7); see also [13]. Cadzow's derivation of (D.6),

(D.7), however, provides less insight into the problem than the derivation

above. Unfortunately, (D.6) and (D.7) rely on the assumption (0.2). If this

assumption is not valid then ;(z) will have a more complicated expression

than (D.6)-(D.7).

APPENDIX E: AN EXTENDED MAXIMUM LIKELIHOOD ESTIMATION PROBLEM

AND ITS LARGE-SAMPLE SOLUTION

In this appendix we present a generalized version of the M4L estimation

problem introduced in section 3. The large-sample solution of the generalized

ML problem can be obtained in a similar manner. The results of this appendix

cover Walker's approach [11]. Even though these results are not used directly

in the paper, we believe that they are useful in deriving new estimators In
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some specific estimation problems.

Consider a random m-vector X which is asymptotically normally distributed

such that for some X to be specified

/ 7X-) dist

NR(X-) dis Y (0, A) (E.1)

where N denotes the length of the sample used to construct X. Let a be the

parameter vector to be estimated. Assume that a completely determines the

asymptotic distribution (E.1) of X. In contrast to the treatment in section 3

we now allow X to depend on e . However, we impose some restrictions on this

dependence. Thus, let X be partitioned as

X ,ne n- dim e

We assume that

where x - x has the form

x - x = -Be + r , (E.2b)

where B is a nonsingular (at least for N - ) matrix, and where B and r

depend on the data only. Furthermore, we assume that there exists £ such
that

Iz z1- 0(1/N) , (E.3a)

and W such that

1- W I = o, (E.3b)

where hoth z and W depend only on the data at hand.
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Note that assumption (E.3b) is fairly weak. The matrix , may be taken

as W(') with a consistent estimate of a . Similarly, (E.3a) will be

satisfied by taking z = z(e) provided that

['-- z(e) = 0()/IID . (E.3c)

This can be seen from the following Taylor series expansion

z(;) = z(o) + [- z(e)](e-e) + 0(/N) = z(e) + 0(1/N) (E.4)

where the second equality follows from (E.3c). Satisfying the conditions
(E.2) and (E.3c) in a given application requires careful choice of X (for a

specific example see [11]).

Under the conditions above we derive a simple large-sample approximation
of the ML estimate of e , in the manner of section 3. The asymptotic log-
likelihood function of X is given by (3.2). Paralleling the analysis in

section 3 we obtain an asymptotically valid approximation of the derivative
with respect to e of the log-likelihood function:

1 at() [BO(1v)]w' (X-7) + 0(1/N) =

- , 0 + 0(1/N) (E.5)

An approximation of order 1/N of the ML estimate (the solution of the equation
~aL(9)/ae - 0) is given by

EB, -a ] 0 (E.6)

Using (3.6), we rewrite (E.6) as

wcBe= r - Z (E.7)

which gives

40



-1' (E. 8)
8 = B l(r-W12W22 z)

Concerning the asymptotic accuracy properties of 8 , (E.8), we can prove

results analogous to those of section 3. To save space we shall omit the -,

details.

APPENDIX F: THE NONSINGULARITY OF W22 and W22 "

In this appendix we analyze a condition which was tacitly assumed toi-1

hold. It was assumed that the inverse (m-ne) x (m-ne) matrices W^ and

W exist. Since we let m tend to infinity this assumotion should be

analyzed with some care. Indeed, some eigenvalues of these matrices might

tend to zero as m * =and then, even though the matrices are nonsingular for

any finite m, they may be ill-conditioned for large m. To address these

issues we state the following result.

Lemma F.1. Consider the mxm matrix W given by (4.4d). Let

(A.,ju1,...,m} denote the eigenvalues of W 22and let

(in) = xf.. (in) (F.1)min in max 3

Then

(M) (m+l) (M) (m+1) (F.2)
Xmin X Xmin Xmax Xmax '

and

(m) 4 i 4
Smin = lim Xmin = X InfIC(e )I , (F.3a)

l (M) 4 i 4
Ia imx = supIC(e fl .(F.3b)

Proof: The Inequalities in (F.2) are direct consequences of the fact that as

m increases, the sequence of W22 matrices is a sequence of nested non-negative
U definite matrices. We will now prove (F.3a). (The proof of (F.3h) is
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similar). Let y be a real number, and consider the matrix W - yI The
22

(k,p) element of this matrix is given by

4 f T C(eiw)i4ei'w(k-P)dw - Y6k,p

1 41C e w 14 -yleiw (k-p)d

If y is such thaat

x 4 Ne ,w )1 4 -,->, for w fr IT] (F.5)

•then it follows from (F.4) that W 22- yI is the covariance matrix of a moving-

;.average process with a covariance generating function equal to the left-hand-

side of (F.5). Thus

W 'y'I for all m . (F.6)
22_i i d

If (F.5) does not hold, (F.6) cannot be true. Now, amin is uniquely defined

by the following two conditions.

W n for all m . (F.7a)

and

W (a + r)I , e > 0, cannot hold for all m . (F.7b)

F Prom the above discussion it readily follows that a min is given by (F.3b).

Since we assumed that C(z) has no zeros on the unit circle (Al) we

conclude from the lemma above that amin > 0 . Thus, W_ exists for any22
value of m (finite or infinite). However, note that if the Dolynomial C(z)

has zeros close to the unit circle then some numerical problems may be

expected. Indeed in such a case 0 in will be small and then W will be

ill-conditioned for large m, cf. (F.3). Since W2 2 is a consistent estimate

of W2 we expect that the discussion above applies to W as well, provided

that N is sufficiently large.
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a In the small-sample case some additional care may, be needed. The matrix

W22 is obtained from (4.4d) where (bk} are replaced by (bk} computed from

,ai} and (r } via (2.5). When C(z) has zeros close to the unit circle it may

happen that the estimated symmetric polynomial

Snc -

B(z) = J_ bn z k (F.8)
k= nc

has zeros on the unit circle. This is, for example, the case whenever B(z) is

not factorizable. As is known, the polynomial B(z) will have in this case

complex zeros with odd degree of multiplicity on the unit circle.For
w221 (F.3a) becomes

lim inx ~ e) (F.9)"min Xmin(W 22 )c(W22 ) inflBeJw).9

Thus, if (F.8) has zeros on the unit circle then we get from (F.9) that

"min = 0 and, therefore, we expect W22 to be very ill-conditioned for large
m. To avoid such cases we may need to determine the zeros of (F.8) and

perform some correction on those which are on, or too close to, the unit

c ircl e.

%.,4.".

'

. 43

- tI



-It

APPENDIX H

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF MULTIPLE

SINUSOIDS FROM NOISY MEASUREMENTS
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MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF MULTIPLE
SINUSOIDS FROM NOISY MEASUREMENTS

P. Stoica, R. Moses, B. Friedlander and T. Soderstrom

ABSTRACT

The problem of estimating the frequencies, phases, and amplitudes of

sinusoidal signals is considered. A simplified maximum-likelihood Gauss-

Newton algorithm which provides asymptotically efficient estimates of these4.

parameters is proposed. Initial estimates for this algorithm are obtained by

a variation of the overdetermined Yule-Walker method. Some numerical examples

are presented to illustrate the performance of the proposed estimation

procedure.
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1. INTRODUCTION

The problem of estimating the parameters of sinusoidal signals from noisy

data has received considerable attention recently [1]. The sinusoid

parameters can be estimated using correlation based techniques. These include -

Prony's method, Pisarenko's harmonic decomposition procedure, and the Yule-

Walker method in one of its many versions.

Prony's Method (see [2] for a recent survey) is known to give

inconsistent estimates. It cannot be used in cases with a low signal-to-noise

ratio since the resulting estimates may be highly biased. In Pisarenko's

procedure [2] this problem is eliminated. This method gives consistent

estimates, but in some cases it has poor accuracy.

The basic Yule-Walker method [1],[2] does not eliminate this deficiency

of Pisarenko's method. It gives consistent estimates, but its accuracy may be

poor. Since the Yule-Walker method is attractive from the computational

standpoint, much effort has been spent in recent years to improve its accuracy

properties.

The overdetermined or high-order Yule-Walker method is a modification of

the basic Yule-Walker procedure, which was reported to lead to a considerable

increase in resolution [33,[4],[5],[6]. This method was proposed

heuristically, and the properties of the corresponding estimates were analyzed

by Monte-Carlo simulations only. The reasons for the increase of the

parameter estimation accuracy when the number of Yule-Walker equations and the

model order are increased, were not too well understood. In [11 and [12] we

have tried to fill this gap. Very briefly, the conclusions of [11],[12] are

that the asymptotic accuracy of the Yule-Walker estimates will increase with
the number of Yule-Walker equations used and with the model order, although

not necessarily monotonically. However, even when the number of Yule-Walker

equations and the model order are increased without bound, the limiting

accuracy may still be worse than that corresponding to the Cramer-Rao lower

bound (CRLB). Thus, in general, it is possible to improve the accuracy of the

Yule-Walker based estimates.

2 .
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In this paper we consider the following procedure for estimating the

Sparameters of sinusoids in noise. We use the overdetermined Yule-Walker (OYW)

method to get initial estimates of the sinusoid parameters. These are then

used as starting point in a Gauss-Newton algorithm for maximizing the

likelihood function (under the assumption that the measurement noise is

Gaussian). Since the OYW method provides good initial estimates, the Gauss-

Newton algorithm needs relatively few iterations to converge. Also, the

problem of convergence to local maxima is not likely to occur. Furthermore,

we show a way to considerably simplify the Gauss-Newton algorithm. The

simplified algorithm is also more stable from the numerical point of view.

Yet it has the same convergence point and, at least asymptotically, the same

convergence rate as the original Gauss-Newton algorithm. We show by means of

a number of Monte-Carlo simulations that the (simplified) maximum-likelihood

(ML) Gauss-Newton algorithm has better resolution than the OYW method.

Comparisons with the asymptotic CRLB are also included.

Some studies related to the present paper were reported in [7] and [8].

In [7] an approximate ML method is discussed. A relatively simple numerical

algorithm is obtained, at the cost of sacrificing some accuracy. The method

proposed here is of comparable complexity, but has better asymptotic

accuracy. Reference [8] presents a performance comparison of several

estimation techniques based on linear prediction and on Singular Value

U. Decomposition.

The outline of the paper is as follows. In section 2 we state the

problem considered here. Section 3 contains a brief review of the

overdetermined Yule-Walker method for estimating the sinusoid parameters.

This method is used to provide initial estimates for the proposed maximum

likelihood method, which is described in section 4. The asymptotic properties

and some computational aspects of both methods (OYW and ML), are briefly

discussed. The problem of local minima of the cost function being minimized

in the proposed method, is discussed in section 5. Numerical examples

illustrating the performance of the proposed technique are presented in

section 6.
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2. STATEMENT OF THE PROBLEM

Consider the following sinusoidal signal

m
x(t) ai sin(wit + * i )  I t=1,2,... , (2.1a)

i =1

where

xi' ,oi e R , wi e (0, .r) , and wi * wj for i j j . (2.1b)

The assumption wi * 0 means that a possible non-zero constant level of x(t)

has been removed. The condition wi is a consequence of Shannon's

sampling theorem.

Let y(t) denote the noise-corrupted measurements of x(t)

y(t) = x(t) + e(t) , (2.2)

where (e(t)} is a sequence of independent and identically distributed
2Gaussian random variables with zero mean and variance x . We assume thit

x(t) and e(s) are independent for any t and s.

The assumption that e(t) is Gaussian may appear somewhat restrictive.

Under the Gaussian hypothesis it is easy to write the likelihood function of

the data and to obtain an explicit expression for the CRLB. If in some

application the Gaussian hypothesis fails to be true, the algorithm of this

paper is still applicable, but it will no longer provide the ML estimates.

Nevertheless, the estimates obtained by using the algorithm will still give

the minimum variance in a fairly large class of estimators whose covariance

matrices depend only on the second order statistics of the data. This is

explained further in section 4.

Next we denote by rn the covariance of y(t) at lag n (n=O, 1,2,...)

r = Eiy(t) y(t-n)j . (2.3) -

4



The operator E{.} denotes statistical expectation. The sample covariances

corresponding to (2.3) shall be denoted by rn . We will use the following

definition of r

:." i N-n

( rn " l y(t) y(t+n) , n = 0,1,2,...(

rn = n
t -1 (2 .4)

where N denotes the length of the data sample.

Collecting the amplitudes {i} , phases (0i} and frequencies (wi} in a

single parameter vector, we define

[CL [cl'""cm' 41'"*m' .l,...,WT ]T . (2.5)

The problem considered in this paper Is the estimation of e from N samples of
noisy measurements (y(1),...,y(N)}

L
I

p
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3. THE INITIAL OVERDETERMINED YULE-WALKER ESTIMATES

As is well known x(t), (2.1), obeys a homogeneous difference equation of

order 2m,

x(t) + alx(t-1) + ... + an x(t-n) = 0 , n - 2m , (3.1)

where (ai}l R are such that the polynomial

In

A(z) 1 1 + a ... + a , (3.2a)

has all its zeros located on the unit circle at etiwk, i.e.,

A(et k) = 0 , k = 1, ..., m . (3.2b)

See [21,[41,[51,[131. Since we have

rn = Ejx(t) x(t+n)t + x2 6n,O (3.3a)

where 5ij is the Dirac delta

(1 i~j
6. I i~j(3.3b)i ,j =  0 isj

it follows from (3.1) that the coefficients (ai} obey the so-called

(modified) Yule-Walker equations
n

~~i~o a, r~ ' k ,I , (ao  1 ) ,(3.4)

A commonly used technique for estimating the frequencies {wi} is based on

(3.4). Consistent estimates (a.} can be obtained by solving the following

linear system of equations.

6



L.

. . r ;n+1
a

rn+1 r 2 rn+2  L 2n (3.5)

C L. I  .... rLn anl rL

where {r1} are the sample covariances. The matrix appearing in (3.5) has

full rank, at least for large N, [142. Note that for L > 2n the system (3.5)
* is overdetermined and needs to be solved in a least-squares sense.

Intuitively we can expect that the larger L, the more accurate will be the

estimates {al) , since the covariances for large lags contain "useful
information" about the covariance structure of the data. While it is not

always true that increasing L increases estimation accuracy [121, it was shown

by simulations [31,[61, that increasing L is often useful. A theoretical

explanation of this empirically noticed fact was recently presented in [121.

It was shown there that while the asymptotic (for N . ) accuracy of {al
does not increase monotonically with L, it improves considerably in the limit

as L . - . For L < - the estimation errors (a1 -a1 ) are of order

1/VW ,and for L * they are of order I/L/N . The estimation technique

based on (3.5) with L > 2n is the so-called overdetermined Yule-Walker (OYW)
method C3]-[6].

The frequencies (wi} can now be estimated by determining the roots of

A(z) = 1a 1 z + ... + anz n = 0 (3.6)

Note that determining the estimates (wi} from (3.6) implies, in general, some

approximations since A(z) is not guaranteed to have all of its zeros on the

unit circle. (For example, one may look at the peaks of 1/IA(eJw)1 2 , or at

the angles of the roots of A(z)).

The problem of determining estimates of (ai} and ({i} once estimates

{wi} of the frequencies are given, can be reduced to a least-squares fit.
Rewrite (2.1), (2.2) as

7
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m
y(t) - ( ( sin wkt + bk cos ,kt) + e(t) , (3.7a)

k=1

where %

Sk 2 "k Cos Ok bk - , sin Ok• (3.7b)

Replacing (i} in (3.7) by their estimates ({i} , the problem of estimating

akobkI can be formulated as the following minimization problem:

M m 2
min I jy(t) I (ksin Wkt + bk COS Wkt )I M < N . (3.8)

(8kbk} t= t k ]

The solution to this problem is given by

-tjj~ j~tl-j tjjVtj~j (.a

bm A

where

qQ T
V(t) *[sinZ t,., sin t, cosat, ,cosAt] (3.9b)

The reason for not using all of the N data points in (3.8), (3.9) will be

explained later. It will be shown that if M in (3.8) is too large (e.g. M-N)

then the estimation accuracy may deteriorate considerably. Note that for

M < N we also get a smaller computational burden.

Using {0i1 and {b,} in (3.7b) we readily obtain estimates of ((l} and

"(,p} as given by

,j arctgb / } (mod 2,r),
j = m,..., m . (3.10)

= /cos j,

rI (,

V , .



Next we discuss some implementation issues related to (3.9). Straightforward
programming of (3.9) would lead to a large computational burden. The main
reason is that calculation of trigonometric functions on a computer is time-
consuming. Note, however, that the solution ci(t) of the following second-
order difference equation

ci(t) - (Zcoswi) cl(t-1) + ci(t-2) = 0 , t=3,4,...

with initial conditons

ci(1) = cos 'i ci(2) = cos 2 i ' (3.11b)

is given by

ci(t) - cos Wit , t=1,2,... (3.11c)

A different set of initial conditions (c.(1) - sin i, c.(2) = sin2w i) will
produce c i(t) = sin wit . Thus, the sequences
(sifnlit, coswit; tz1,...,M; i-1,..,m} can be generated using (3.11) at a cost

of approximately 2?i multiplications, and the vector .V(t)y(t) in (3.9) will
reqiire a total of 4ram multiplications.

Next we present an efficient way for computing the matrix EV(t)lV(t)T in
(3.9). It follows from Lemma A.1 in the Appendix that

I 1 sin wit sin wt-= i [cos 1ijt - Cos wj t1t=j 

Mi(M+)j (M+)

ijl

:'" si1 l~ [  Z ( l[ ]o[ 3.12)

"sin w sin [ i

where

wij wi-wj ' Cij Wi + j"

9



Similar expressions can be derived for the other elements of the matrix in

(3.9). For large M we can further simplify the computations by using some

approximations. From Lemma A.1 it follows that

1 M T II.;'
9 V(t)v(t)T 12m + 0(4) (3.13)

t=1

In (3.13) we tacitly assumed that wi 0 w, for. i 0 j • If this is not the

case, we can work with Wi and wj slightly corrected as

I 9. wi-c " ' . j + c, (3.14)

for some e of order I/L/T . We conclude from (3.13) that for large M the

following simple estimate

2 1= ) V(t)y(t), (3.15)"

is an approximation of order 1/M of , (3.9). Note, however, that the

smaller inflwi - ;jw the larger the value of M needed for the approximation
i*j

in (3.13) to be valid (see the discussion in the appendix and also equation

(3.12)). If M is not large enough then , may not be a good approximation of

Furthermore, the calculation of ; may be problematic in such a case

since the matrix in (3.9) will be ill-conditioned.

We conclude this section with a discussion of the asymptotic properties

of the estimates introduced above. The frequency estimates {wi} obtained by

the OYW method are consistent, (15]. The asymptotic (as N,L + m ) standard

deviations of {wi-wi} are of order 1/LvIW , provided that L increases not

faster than NY , with y < 1/2 [12). The condition y < 1/2 is sufficient

but probably not necessary. A necessary and sufficient condition on y is not

known. Since the CRLB on the standard deviation of (WOi is O(1/N3/2) as is

shown in the appendix, it seems possible to improve significantly the accuracy

of the OYW estimates.
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An analysis of the asymptotic behavior of (ai, *p , (3.9), (3.10), does

not seem to be available in literature. Due to the use in (3.9) of

(wi} instead of {wil such an analysis is not so easy. Since { i} and

0 1}are used as initial estimates, their accuracy is not too important, and

will not be discussed in detail. What is, however, quite important is the

choice of M in (3.9). To simplify notation, we will consider the case of a

single sinusoid (in-l). It should be emphasized, however, that the same

conclusions apply also for m > 1.

For m-1 and large M we have from (3.9), (3.13),

a 2 M si nAt
- I t~1 Lcos-tjy(t)-[sinwt coswt]l} + 0(g) -

t cost -tsinwt], (c-w) +

2 M sin Ct +tcos(, t )
1t 1 i t S

stI [t 2cos -ti l I L(-tsin +

ICI+ 7 1 c-(t) - 2 Ltow rtiwl +

+ .... [t~slnt, t2cosat]q -2 + • + + 0(1/M) , (3.16)

where b, , is the vector of the true parameters. It is not difficult
to see that the first term in (3.16) is 0(1/f-) . Since , = 0(1//-N)

see the discussion above, it can be shown that the second term is 0(M/L/-N)

the third is 0(M2/(L/-N) 2 ) , etc. Thus if M increases faster than L/-N (for

example, if we set L N1 for some 6 > 0 , and M=N), then difficulties

11

m I
i!



may occur. Indeed, in such a case the estimate , may not be consistent. The

condition M << L /Vf must be imposed. Then the first and second terms in

(3.16) are asymptotically the dominant ones. Note that the magnitude of the

first term decreases with M while that of the second increases with M. To get

good asymptotic properties for ; (i.e., small estimation error ,-, ), M

should be chosen such that these two terms have the same magnitude. Thus the
"optimal" rate of increase of M is given by

M z (LVV)J/3 . (3.17)

The estimation error 1 -,) corresponding to this choice of M, is of the order

1'2

f.

1m
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4. A MAXIMUM LIKELIHOOD ALGORITHM

The ML estimate of a is obtained as the minimum point of the following

loss function (see [7],[8] and also the appendix)

N 2
LF = (t,a) , (4.1a)

t: 1

where

m
C(t,9) = y(t) - a sin(wit + i)  (4.lb)

We use the Gauss-Newton algorithm to minimize (4.1). Let ;k denote the

parameter estimate at iteration k. The updated estimate ik+1 Is computed by

i z k N (te ).T(t,8 J] [ N (tek),(tek)i

t=1 t=1

where

Ce(t,a) A a(t,a) (4.2b)

and where we set

.= 8 the OYW estimate. (4.2c)

The elements of the gradient vector c(t,e) are given by

a) =sln(wit + *i) A

3C(tS) = -i cos(it + i=1,...,m . (4.3)

-t C i Cos (it + €i".,a) -t-.C0

The matrix to be inverted in (4.2) contains entries of very different P,

magnitudes. The elements of its left-top mxm block are of order N, while

those of the right-bottom mxm block are of the order N . Thus, it is

desirable from the numerical standpoint to "balance" the elements of the

i' 13
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matrix. This will also be convenient for some subsequent theoretical

considerations.

Let us introduce the notation

KN L m N3/21 (4.4)

where IK denotes the K x K identity matrix. The following recursion is

equivalent to, but numerically more reliable than, (4.2a)

k+1 k 1 kKN+ = KNS - HN1(;)[Kw t c (tok )(t,ak)] , (4.5a)
t=1

where

H K- I(t,el T (t,a)]K 1. (4.5b)
HN~ N K t 1 (

N (k.;kj

Evaluation of the vector :Co1(t is straightforward. Its elements

contain trigonometric functions which could be computed efficiently by the

technique discussed in the previous section. Evaluation of the matrix

H (;k) can be done similarly but it appears quite costly. To overcome thisNdifficulty we propose an approximate version of the iterative algorithm

(4.2a).

As is shown in the Appendix,

H() = G(o) + 0(1/N) , (4.6)

where

14



ii

I m  0 0

. 0 -... 0
'I * . :i (4.7)

G(9)=2 " 6
o ' 00

am Ia

6 12
0 -0

I 0 I0 a • 6 al .12
0 "7 0 -

I am

1 kReplacing H'N(e) in (4.5) by its large sample approximation G(;k) we get,

Kk+1 = k 1N;)(t;)
N N8- ~e)[K-1 te ct8) (4.8)

where (pk} is a sequence of positive scalars which can be used for

controlling the step size (vk can be determined, for example, by using a line

search algorithm.). The algorithm (4.8) is much simpler than (4.2a). The two

algorithms have clearly the same convergence point. Furthermore, for large N

they will also have similar convergence rates.

We conclude this section by a discussion of the asymptotic accuracy of

the limiting (as k - ) estimate obtained by (4.8). Let this estimate be

denoted by e

a = lim ;k (4.9)

Since we initialize the recursion (4.8) with a consistent estimate, it is

expected to converge in a few iterations. In fact, parallelling the

calculations in the proof of Theorem 4.1 below it is possible to show that

(4.8) will asymptotically (as N -) converge in one iteration provided that

* L in (3.5) tends to infinity faster than /T.

Under the Gaussian hypothesis, a is the ML estimate. We expect,

therefore, that its asymptotic covariance matrix equals the CRLB

P8  k2G(a) see the appendix for the derivation of PO However, this
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does not follow immediately since some of the standard assumptions of ML

theory [10) fail to hold in our case (e.g. e (t,a) is a nonstatlonary -

process).

If we relax the Gaussian hypothesis, then 6 is the prediction error (PE)

estimate, [16]. Again, the standard PE theory does not apply to our

problem. If it were applicable it would follow from [16) that the asymptotic

covariance matrix of e Is still given by Pa .-

The asymptotic covariance matrix of the normalized estimation errors

K (e-e) is derived next. We show that this matrix equals Pa. for any 1..

-N CR 41*r7
distribution function of the data.

Theorem 4.1. Consider the process y(t) generated by (2.1),(2.2) under the

assumptions stated except that e(t) is allowed to be non-Gaussian. Let e be

the estimate given by (4.9). Then

lim E[KN(e-e)(e-e) TKN] = CR' (4.10)

where KN is defined in (4.4) and PCR = 2G(e)

Proof:

Note that,

- N (
KN t c8(t,8)c(t, 5 = 0 . (4.11)

'S.I

Thus, for large N we can write

1N

0 - e (t,a )(t) + F(e) KN(8-e) +N t= a

3m - (4.12)+ ~ (5KN. 5 + ...
1=1 Ne

a -67
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where ai is the i-th component of o and

'" -~I N T } . (.3
F(s)- KN t 11 o(t,) Ce(t,a)+ e(t,)(t,) K (413)

The first term in (4.12) is asymptotically independent of N. To see this note

that its asymptotic covariance matrix, say P, is given by (see (4.5b) and

-, (4.6))

1~unE{~' N N T -1P-N.lm EK tI S1iCl(t,S)e (s,e)c(tle(s)]KN }

" lIm KN1 C (tS)C (t,o)]KNI = X R)1 (4.14)

where Pa is defined in the Appendix. The last equality in (4.14) is also
CR

proven in the Appendix.

Next we show that for large N

-1 NKN [ N £e(t,e)¢(t)]N =O(I//N). (4.15)

The matrix €B(.,.) of second-order derivatives is given by

0 I-diag[cos(wit+,1 )] ' -diag[tcos(wit+,1 )]

(t'8) diag[cos(w"t+. 1) 'dlag[a s;i;(w iti)] Idiag[ta i s(w j+,i j] ' N

diagtcos(wit+ 1 )], diagtaisin(wit+01 )], dag[t ilsin(wit+i)]

(4.16)

2-', where each block of the matrix has size mxm. The generic element of the

matrix in (4.15) can therefore be written as

NN a. t8 sln(lt+ )e(t) , (4.17)
N N tzl

where a (0,1 or 2} , a=tai or il} , wi = and * = or *j+ .

The variance of V is readily evaluated:
N
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2 N N
E{V 2} 2 E{ I  j tasasin(wt + O)sin(ws + $)e(t)¢(s)}=

= 22X 2 t2Bsin 2 (Wt +

NZR t=l

Thus,

EJ 2 1 const. 1 t O

which proves (4.15).

It follows from the calculations above and from the Appendix that

F(e) = x2 (PeR) 1 + 0(1//WT •

Next we show that the higher-order terms in (4.12) can be neglected

asymptotically. Note that

-F~e) is of the same order of magnitude as F(e) , for i=l,...,2m ,

iL4

- aF(e) is of the order of magnitude of F(e).N , for i=2m+1,...,3m..', ~ei ,, ,

Since

- ; (Ot/VU) , i=,..,2m
-. (i-ei) = "°

11 (IN/FT) , i=2m+1,...,3m

2 and since F(e) is asymptotically independent of N as shown above, we conclude

that the higher-order terms in (4.12) are 0(1//T) . Thus, for large 4,

-1 C N
K(88 -. P8  K_ I

" 7 Nt-I

which implies that, cf (4.14)

I -
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lrn E{K (ee)(e~e)T 1 P 4 (P -1 1 a 8
NXTK}_7 CR " ' PCR p CR

It follows from the result above that in the case of Gaussian data, the

estimate e of e is asymptotically efficient. For non-Gaussian data, e will

pasymptotically be the minimum-variance estimate in a fairly large class of
estimators whose covariance matrices depend only on the second-order

statistics of the data.

plym

q
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5. THE PROBLEM OF LOCAL MINIMA

A major concern in any iterative minimization algorithm Is the presence

of local minima in the function to be minimized. Below we analyze the shape

of the Loss Function (LF). For an arbitrary parameter vector e we can

express LF(e) as,

LF(;) = N.{LFs(;) + LFn(;) + R} (5.1a)

where

LFS(;) N[x(t) - xAt)2 (5.lb)

LFn(i) = e(t)[X(t) - x(t)] (5.1c)

R N (5.1d)
NA t 1 e(t)

and where ;(t) is defined as in (2.11 but with elements of replacing

elements of e there. Comparing (5.1c) and (4.17), we see that LF (e) is
n

O(II/Wl . Also, writing out (5.1a) and using (3.12) (with M=N), it is easy -'

to show that

LF S(e) 1 [aisin (wit +  "isin(it +  2 + O(I/N)
1=1 t1

= ! FI(aI' wit .I) + O(1/N)
1=1

where

N

Fl ( *i , i) = N- Z [aIsin(wit + *i) - aisin(Wit + )]
t= I

Thus, to within O(1/N) LFs () is the sum of m decoupled functions FI;

moreover, all of the F,'s have the same form. Understanding the shape of LFs
asymptotically reduces to understanding the shape of the function

t=

N20-

204r



It is easy to check that F is quadratic in and sinusoidal in ; , thus, the
local minima of F with respect to these two variables are the global minima.
However, F is not so well-behaved as a function of w . A plot of F(w) for

Nz40, w-0.4 , 0 = =, and = -= 1 is shown in Figure 5.1. From this
figure it is apparent that the initial estimate of m must be within the deep

valley if we expect the Gauss-Newton algorithm to find the global minimum.

In Appendix B we show that the width of the valley is in the range
A [2w/N, 8w/N] . Thus, the initial estimate must have a standard deviation

on the order of 2w/N . However, the standard deviation of w estimates
1/2obtained from (3.5) are 0(1/LMI , when L < N which asymptotically is too

large for use with the Gauss-Newton method. Thus, we need to improve the

initial frequency estimates before starting the minimization.

It is known [7] that for N . - the ML estimates of (w} are given byVi
-; the maxima of the periodogram. Thererfore, one method for improving initial

frequency estimates is to search in some small interval about each "ni ' say

[ -i " So wi+s3 for the maximum of the periodogram. Specifically, the

following method can be used.

Choose appropriate values for , and L •

For each i=1,2,...,m

11 Compute the periodogram ci of the data at frequencies

Wit,, ± LA i t 0'1'.=.0Z, """'max

using

2 2 )/2

where and b are computed using (3.15) but with M-N
4 i

..

2) Choose as the new initial frequency estimate the wit whose

corresponding a,, is largest; compute the new initial amplitude and

21



phase estimates using (3.15).

From the above discussion, &w should be chosen less than 2w/N to ensure that

one of the i is in the deep trough of LF; in our simulations we used

aw[ , 1i •Moreover, x should be chosen so that

Pr[w ^ a. w i+Xa Al is sufficiently large. In our simulations we

chose 'max = 20 ; however, more sophisticated procedures could be used. For

example, since the OYW method was used to obtain I max could be chosen
based on the asymptotic probability destribution of the (j given in [12].
Finally, one must ensure that the search interval for two adjacent frequencies

do not overlap.

ad2
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6. NUMERICAL EXAMPLES

We present some numerical experiments that indicate the performance of

the proposed algorithm. We first consider the poblem of estimating a from a
signal of the form (2.1), where m-2,

=1.0 = 0.4 = -0.5

2 =1.0 W2 0.2w 2 1.0

In all examples L = VIT , and M is chosen as in (3.17). The white noise

variance 12was varied so that the SNR ranges between 0-20 dB in 2.5 dB
22

increments. (Here, SNR is defined for each signal, i.e., SNR = C/2L x

For each SNR, 50 independent data sets were generated, and average sum-squared

errors (SSE) of the resulting estimates of KNe were computed. The SSE is

defined as

1

where K is the number of independent estimates obtained (50 in these

simulations) and ei is the i-th estimate vector.

The SSE of the estimated coefficients for N-500 are shown in Figures 6.1-

6.3. In these (and the remaining) figures, initial estimates are those

obtained using the methods of section 3. Equation (3.15) was used for

estimates in these plots; however, the SSE for estimates obtained using (3.9)

are not significantly different (and in particular, no better on the

average). From these initial estimates, improved estimates were obtained as

outlined in the previous section, then the Gauss-.Mewton algorithm (equation

(4.8)) was used. In equation (4.8), vk was at each iteration set to 1; if LF

increased, v was decreased by a factor of 4 until the resulting step was such

that LF decreased.

Figures 6.4-6.6 shows the SSE of the initial estimates from the OYW

" method, the improved estimates using the method of Section 5, and the ML

estimates. The number of data points, etc. is the same as for figures 6.1-

- 6.3, and only the first parameters 1' 01, and w , are shown. From Figure

6.6 we see that the method of Section 5 significantly improves the initial

* frequency estimates, especially for low SNR. Moreover, the iterative ML

23



method provides significant improvement over the modified initial estimates.

Note that although amplitude and phase estimates sometimes become worse after

the initial frequency improvement, they become much better after the iterative

step. As a side note, Figure 6.6 shows that the iterative ML method perform

better than regular FFT-based methods, since the frequency estimates after the

improvement of section 5 are at least as good as FFT-based estimates.

From figures 6.1-6.3 it can be seen that the SSE of the ML estimates are

very close to the Cramer-Rao bound for SNR's above 0 dB. For the SNR of 0 dB,

the high SSE's are caused by convergence to a local minimum of LF in only 2 of

the 50 cases; and in these two cases, the w, estimates were in error by less

than 0.006w . Similar performance is evident in Figures 6.7 and 6.8 for N =

1000 and N = 50 data points, respectively.

From these figures it is apparent that there is a SNR threshold above

which the ML estimator gives variances that agree closely with the CR lower

bounds. Moreover, this threshold decreases with increasing number of data

points. This latter fact is evident from figures 6.3-6.5 where the threshold

is 5 dB for N = 50 data points, 2.5 dB for N = 500, and 0 dB (or lower) for

N = 1000.

Figure 6.9 shows results for N s 500 data points when the frequency

difference between w, and w2 varies. Specifically, w, is fixed at 0.4r

and w2 is varied from 0.2v to 0 .4, . The amplitudes and ohases are the same

as before, and the SNR is 10 dB. When 02 - 0.375w , the ML method fails to

yield better average results than the initial guess; however, these poor

averages are caused by failure of the ML method to improve the estimates in

only 5-10 of the 50 cases.

In Figure 6.10 we show average error results for N = 500 data points when

the additive noise is colored. The noise used is MA(1):

n(t) [ [d(t) + 0.9(t-1)]1V'T="

Note that n(t) has the same total power as e(t) does. It can be seen in

Figure 6.10 that the ML method provides signflcant improvement over Yule-

N24
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Walker estimates even for colored noise. In fact, the errors in the colored

noise case are lower than when white noise was used. This is presumably due

to a lower asymptotic CR lower bound for the colored noise case. The Yule-

Walker method does not give consistent estimates in this case, because the

first row of equation (3.5) should not be used (the data can be modeled as a

limiting ARMA(4,5) process, in which case (3.5) holds only for k ) 2)

However, for large L, the effect of the first equation is small, and
"reasonable" estimates could still result (as is seen in Figure 6.7). We note

also that for colored noise, the proposed method is not a maximum likelihood

estimate, but it is still an output error method.

The CPU time .eeded to obtain the ML estimates was about 10 times that of

the time needed to obtain the initial estimates. (The initial estimates

required .08-.35 seconds and the ML estimates .70-4.0 seconds on a VAX 11-750

as N ranged from 100-1000). About one-half of the CPU time was spent
obtaining improved initial guesses via (5.4), and the other half was spent on

the actual function minimization. The minimization procedure rarely required

more than 3-4 iterations to achieve a tolerance of 10-4 to 10-6 (where no

element of s changed more than "tolerance" in one iteration).

As a final note, the recursive computation of sinwt or coswt using

(3.11) required only about 1/6 the CPU time of direct computation. The error

between the recursively and directly computed values remained below J0- 3 for

N < 1000 (using single precision arithmetic); a typical plot of the error is

shown in Figure 6.11.
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7. CONCLUSIONS

We derived a (simplified) Gauss-Newton algorithm for estimating the

parameters of sinusoidal signals in noise. The algorithm is based on

maximization of the likelihood function and is initialized by a set of

preliminary estimates obtained via the overdetermined Yule-Walker method. The

asymptotic properties of the proposed techniques are discussed and it is shown

that the parameter estimates are consistent and asymptotically efficient for

the Gaussian case. In the non-Gaussian case the estimator provides a minimum-

variance solution within a large class of estimators based on second order

statistics.

The performance of the proposed technique and its capability for

resolving closely-spaced sinusoids were studied by Monte-Carlo simulations.

It was shown that the Gauss-Newton procedure performs better than the

overdetermined Yule-Walker method.

I.
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APPENDIX A

CRAMER-RAO LOWER BOUNDS

The estimation problem formulated in section 2 falls into the class of

nonlinear regression problems. The CRLB, say PH for any unbiased

estimator of a and x can be easily derived [7]. In this appendix we will be

interested in the asymptotic CRLB: P . The reason for this interest is

,- threefold:

(i) PR has a much simpler expression than PH and is, therefore, much
CR CR

easier to compute. Yet P is a good approximation of PR whenever
CR CR

inf lwi-wil 21r(A1ij 2N (A.1 )
1,,1

This will become apparent in the following, where it will be shown that the

smaller the minimum separation in frequency inflw-tjl, the slower is the

convergence of PH to PR . It is worth noting that a main conclusion of

* the study of P in £73 was that P increases rapidly as the minimum
frequency separation goes below the critical value 2ir/N . In such a case

C PR is much larger than PFR

(ii) PH can be attained only under certain restrictive conditions [10]U CRwhich apparently are not satisfied for the problem under study. On the other

hand, PCR is attained in the limit (as N ) by the covariance matrix of

the ML estimate; see theorem 4.1. Furthermore, for other estimation methods

(such as the OYW method) only asymptotic results are available. Thus, it is

P which is of interest in any analytical study comparing the performance

of the ML method with that of other estimation methods.

(iii) The expression of PCR is useful in the derivation of the

A simplified ML Gauss-Newton algorithm In section 4. Note that an expression

for P does not seem to be avuilable in the literature, except for the

special case of m = 1; see [9] and its references.

For the estimation problem under discussion, the log-likelihood function

27
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is given by

LSX2 N ln(2w) N inx2 1 N 2(A22 lx~ -2 t £ 2(t) , (A.21

2,2 t-11

where "
m

E(t) s y(t) a sin(it + 1 i )  (A.3)

The CRLB,

22

PCR  E aL(9,x2 aa ax (A.4)

axax

can be evaluated by straightforward calculations:

NN
aL t

N
aL N I N (t)ax7 x 2x tJ

a aL = Na

E[2'" a ti Ce(t)E{ ¢(t)} "

- t)E{C(tlC (s)} = 0 (A.5)
t= J1 s=1

aL 2 N 2 N2
E1-- E 77(t) (S) - 2, =

ax7 4xT 4x t=1 s=1

N2  -
N 3N N(N-1) N (A.6)44 + + - TX4 (A.6

28
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In (A.5) and (A.6) we used the assumption that e(t) is white Gaussian

noise. It follows that

P 0

P (A.7)

where

9N N T ]-1

and where the derivates of e(t) with respect to the parameters

{ci' , i w"} are given by (4.3). The expression (A.8) for P6N appears, for
example, in [7]. However, the calculations necessary to show that PN has

CR
the block-diagonal form of (A.7), which in turn implies that P8 N is given

CRby (4.8) were not included there.

In the following we will study the limit of pON as N . The
CR

following results will be useful for this study.

Lenma A.1.

For w e C0, 2r) ,I
1Ncos, for w 0

" cos(Wt +,, sn( N +1 ) (A.9)

Proof: [171.

Corrol ary.

For we[0, 2w),
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tlim 1 N tk cos(wt+) .Ir1  k ) 0 (A.10)N m N=+~ J1 0 W 0 ,

Proof: For k=O the limit follows immediately from (A.9). For k > 0 the

limits follow from relations similar to (A.9) obtained by differentiation of

(A.9) with respect to w

Let us denote

=Pl K Pa' 4 K (A.11)
CR N CR N'

where KN is given by (4.4). Clearly Pe,N is the CRLB on the covariance
N- CR

matrix of the following normalized estimation error vector

IVN~c ~

',( - (A.12)

NVI(w -w) j
where , = i1...,%] T  and ; is any unbiased estimator of

-, * and , are similarly defined. In the following we will show that

CR N CR

exists and has a simple expression.

By making repeated use of Lemma A.1 and its corrolary we can write, see

(A.9)

1r .4 ae(t( t) t) =N--lim I tiai _ T lir Ra {cos[(wi-wj)t + *i- *j]

" cos[(Wi+j)t + *I + 0j] 1

*:'']'' lim 1 N3(t)a c(t) " r- lim , N Z {sin((wiwj) t + *i+ 0j]

N-.. tJ1 a9 4jm t=~ t14 ~
+ sin[(w1-'=)t + 0" *]} = 0

309mI
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Ai 1 N 3C(t) aet) =~Ii 1 N cs(jwt+

+ - oil] cos@(W1 +W )t + O.+ 1 = ~ ij(.)

lim 1 N ac~~et) ae(t) Ai1Ntsi[w~jtj i j
N 11- N x - 9 w-- -7 t.. N7 2 ~snctw

+ sin(fl(iwf-wj)t + * - O*1} M

vI 1 3C(t) acdt) N4 N t=1
liNm W-j tm -, t- =v1 tjcos[(w1-wj)t + 0r Y
+ COS[(wj+wj)jt + Oi+ Oj1l 'X ~

1 N a t) a t N

N. NT Jm 1 7--) 1 t 7-j ;',,jJ t2 Icos[(W1-Wj)t + ,-1+

+ COS[(w.+w.3t + O. + 1.3 i d

where 6 denotes Dirac's delta (3.3b). Therefore,
14

Im 0

.ptf h 2 
0

CR al .0 , (A.15)
2 -4 2

0 OLM 0 a111

I 2 2

a 1 0 ia* 0

02 . 2

WEwhich after some straightforward calculations gives
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I

Im , 0 0

,[ O. "--7 0

Pe 2x ' 0 41 0 (A.16)
CR 0 . 6, 0 -7 0 "-7

I I

6 012 0
0-7 . -7.

al . 6 al 1 2

0 Q 7 0* -7L am

Note that the bounds for phases and frequencies are proportional to the

noise-to-signal ratios corresponding to the frequency in question. However,
somewhat contrary to intuition the bound for the amplitudes of the sinusoids

is independent of these amplitudes. Note also, the almost diaqonal structure

of PeR The estimation errors of the phase and frequency of the same

sinusoid are asymptotically cross-correlated. All the other estimation errors

are asymptotically uncorrelated.

It is also interesting to note that the bounds for (i-mi) are of order

1/N3 /2  (see also [9] and its references). This order of the CRLB is rather

unusual for a stationary estimation problem for which the corresponding bounds

are in general of the order 1/N1/2 . However, the problem of estimating the

parameters of a sinusoidal signal is not a strictly stationary estimation

problem: the derivative of e(t) with respect to wi is clearly a

nonstationary signal.

It follows from Lemma A.1 that the smaller the minimum frequency

separation infjwi- jI the slower is the convergence in (A.13). Consider, for
i*j

example, (A.9) for w small but non- zero. Then the left-hand-side of (A.9)

will generally be small provided that Nw , rather than 11, is large enough,

see the right-hand-side of (A.9).
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APPENDIX B

Since estimates of w, *, and a are 0(1/MT) or 0(1//N3 ) , we restrict

attention to the case w ~ - , a , and - . From (5.3) the derivative

of F with respect to W is

2F=1 N
'- W tjjt[.sin(wt+O) ";sin(t )][-2cos(^t ;)] (B.1a)

2w t
= aN -2 N (.

=" t t s i n [ ( t w} t + ( O O) ] + t=a tsin(2wt 2,P) (B.1b)

aN

- a tsin[(W-W)t +

We claim that the zeroes of 2F/2w in the region of interest are nearly equal

to those of the third term of (B.1b). To support this, a plot of

1 t sinpt
t= 1

for N=100 is shown in Figure 8.1. It can be seen that for * not near zero,

gthis function is near zero. Also near *=0 the zero crossings have large

slopes and are therefore insensitive to small additive disturbances. Defining

W , -w and * = - ,the third term in (B.lb) can be expressed as

aN

I- t tsin(wt +)

St=1
-= [cos (t~itsint) + sino(. tt cos Zt)] (8.3)

t-1 t-1

Since j is 0(I1//-) , the second term in (B.3) can be neglected. Thus for

i - ci , = - C and * -, , the zeroes of aF/aw are nearly those of the

function

?* i N
t t sinwt (B.4)

t= 1

It is not difficult to see that (8.4) is zero for = 0 . Morever, for
" < <' (8.4) is positive (since each element of the sum is positive).

For = (8.4) Is negative; thus the first positive zero of (B.4) occurs
for e [ [., .] . Since (8.4) is an even function of ,and since the
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zeroes of (B.4) are approximately equal to the zeroes of 2F/2; , we conclude

that the width of the main valley of F(G) is approximately in the range

* , 2. 2w

i I I
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Figure Titles

Figure 5.1: A plot of F(w) for N 40, w = 0.4, * = 0 0, and a = = 1

N Figure 6.1: SSE's in dB of amplitude estimates for N - 500 data points

Figure 6.2: SSE's in dB of phase estimates for N - 500 data points

Figure 6.3: SSE's in dB of frequency estimates for N = 500 data points

Figure 6.4: SSE's in dB of amplitude estimates for: the initial OYW method,
after initial improvement, and after iteration. N = 500 data
points

Figure 6.5: SSE's in dB of phase estimates for: the initial OYW method,
after initial improvement, and after iteration. N = 500 data
points

Figure 6.6: SSE's in dB of frequency estimates for: the initial OYW method,
after initial improvement, and after iteration. N = 500 data
points

Figure 6.7: SSE's in dB of frequency estimates for N z 1000 data points

Figure 6.8: SSE's in dB of frequency estimates for N = 50 data points

Figure 6.9: SSE's in dB of frequency estimates as w 2 varies
(w, - 0.4 w) . N = 500 data points

Figure 6.10: SSE's in dB of frequency estimates for MA(1) noise example. N =
500 data points

Figure 6.11: Error between sin(wt) computed directly and computed by
difference equation for w = 0.4

N
Figure 8.1 A plot of 1/N I t sin(Pt) for N = 100.

t- 1

37



z
IL

<

<<
<3 5.

IL

Id-

J, S.,



I
z

< N

z J9 '  9

Z- U,

I

0

w6L
(1)in

z
0-4

Wj~
A3<

.J U

H 
-6



GN

z -I

< N

z n

<N

p. 

U)

:4 zJ

()H

W Hj
3 <
0 

-

0

IiI

U)l



Iiiz

Lo
w
L to

NZ

W -1
t<N

II-alMl



w
z

in
zN

M

-4 J

L

U..

w.'U
-'4l

wC

C)
<0,.

m~
w -1..

-<4

in
M)
1 x.

PI!j, "

'..*.J Q



~r w w w ~ w w flrrw -r~r - wig

g . *

in
z

'-I

Z J Ix

-S-

IA.
w
(A

irz w

a w

3 <
In0.

Km U



0

39

a-

Ir z

UU

co
U.



CC.

a-
z
'-4

7.11
tsN

z '-i1U

IL-H-U
(n

U)

in

0-

'I xz-i

-j U'-
in



II
7- < N m

V 0
Z (N 0

:3: in

w H
C3

)C

LU,

0

E3



S- Vp

IA

IL
wz

Ul

WN

<N

0 -4

wN

H: cnl
UL,

LLL

U-

M U,

W N1
<,

ina
M P(Cz U_3,U

3i



zzU _

w

(n (

z -i z

a0N



z w

UlU

__ __ __

W) tn

4?4'.-,, U1w 112N010

mi N



VV

zd

IL.

II



APPENDIX I
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ADAPTIVE DETECTION OF TRANSIENT SIGNALS

Boaz Porat Benjamin Friedlander
Dept. of Electrical Engineering Systems Control Technology
Technion, Israel institute of 1801 Page Mill Road
Technology Palo Alto, CA 94304
Haifa 32000, Israel

ABSTRACT

The paper discusses the problem of detecting transient signals of unknown

waveforms in white Gaussian noise. The signals are modeled as impulse

responses of rational transfer functions with unknown parameters. A

generalized likelihood ratio test (GLRT) is proposed and its statistical

properties are analyzed for both known and unknown noise variances. The GLRT

involves constrained maximum likelihood estimation of the signal parameters.

The performance of the GLRT is compared to that of an optimal matched filter

and an energy detector, for some test cases. Also, the theoretical

distributions of the likelihood ratios under H0 and HI are compared to

experimental distributions obtained by Monte-Carlo simulations.
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1. INTRODUCTION

The problem of detecting transient signals with unknown waveforms arises

in the areas of seismic signal processing, underwater surveillance, and other

engineering applications. Some common approaches to the problem include:

(i) Energy detection, i.e., comparison of the total signal energy to a

threshold; (ii) Noncoherent detection, i.e., computation of the magnitudes

of the Fourier coefficients of the signal and then comparing a weighted sum of

these coefficients to a threshold El]; (iii) Modeling of the signal as a

linear combination of known waveform with unknown coefficients, see e.g.,

[2]. In this paper we propose an adaptive detection scheme for transient

signals, based on modeling of the signal as the impulse response of a rational

transfer function. The coefficients of the transfer function are assumed

unknown, and are estimated by the detector. It is shown in the paper that

when the signal is absent, the parameter estimation problem becomes ill-

posed. This difficulty is solved by introducing a constrained maximum

likelihood estimator. A generalized likelihood ratio test (GLRT) is then

introduced, and its statistical properties are analyzed. It is shown that the

GLRT is approximately distributed as a quadratic form [3, ch. 29). Under HO,

,y, the quadratic form is central, while under Hl it is noncentral and also

contains a bias term. When the noise variance is unknown, the distribution of

the GLRT involves ratios of quadratic forms (central under H0  and non-

central under H1 ). Expressions for the weights, the noncentrality parameters

and the bias are given as functions of the signal parameters.

The performance of the GLRT for the case of known noise variance Is

examined for some specific test ca:;es, and theoretical performance curves are

shown. Finally, the theoretical distributions of the likelihood ratio are

compared to experimental distributions obtained by Monte-Carlo simulations.

V2
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2. THE GENERALIZED LIKELIHOOD RATIO DETECTOR
U

The detection problem considered in this section is as follows.

H0: Y.= v,(

H1 : y- m+ v

where y, m and v are N-dimensional vectors, and where v is a zero mean white- _~s whs 02 to ko - inl ~ i
Gaussian noise whose variance a is assumed to be known The signal m(a) is
assumed to depend on a p-dimensional vector gee , where p < N . We make the

following assumptions on m(e)

(i) The functional dependence of m on e is known, but the value of

a is unknown.

(ii) The Nxp Jacobian matrix

M (a) - (2)

exists for all ece • The rank of this matrix will be denoted by
4'. r(e) . Note that r(s) may vary for different values of a , but

we always have r(e) 4 p

(iii) m(e) - 0 if and only if a = 0 . This assumption enables us to

replace (3.1) by the equivalent detection problem:

y • m(8) + v; (3)'''lH 1 : a *0

(iv) m(a) belongs to the column space of M(e) for all .

Equivalently, the projection of m(e) on the column space of
M(e) is m(e) itself. Later we will show that this condition is
satisfied when m(s) is the impulse response of a rational transfer

function.

3



The generalized likelihood ratio is defined as

P'(y)
G = (4)

where P (y) is the joint probability density function of y , given the

parameter e • The vector e is an estimate of a whose exact nature will be

specified later.

THE ESTIMATE 1

It would be natural to let a be the maximum likelihood estimate of

a The log likelihood function is given by

N 2 1 ]Tym(
logP(Y-v) = og(2 2 T [y-m( a)] (5)

a2

The maximum likelihood estimate is obtained by solving the likelihood

equations

alogP8 () - _ M0 (6)
_____ -.-~~--e)

Unfortunately, the matrix M(e) need not have a full rank for all a In 'J

particular, M(a) may be rank defficient at 9 = 0 , i.e., under H0 (later we

will see that when the signal is a rational impulse response, the rank of M(O)

is exactly half the number of parameters). Clearly, the number of independent

equations in (6) is less than or equal to the rank of M(e) . Hence, when

M() is rank defficient, the number of independent equations In (6) will be

smaller than the number of unknowns. Then the likelihoood equation will have

an infinite number of solutions. Since equation (6) is nonlinear.in a , it

is difficult to chancterize the set of all possible solutions 8. However,

it Is very likely that the norms of the members of ; will be unbounded, i.e.,

sUp 1;1=

In this case any attempt to solve the likelihood equations (6) would lead to

severe numerical problems, e.g., singularities and overflows. To circumvent

this difficulty, we will therefore modify the log likelihood function (5) by

.A-

,<..4

?% -.. .. ... ......... , ,.'. .--,". ". .'-',".<:..-.'"'",".".".'-"-"-'--''':-''J'% ,iIJ



subtracting a term proportional to the norm of e , i.e., we maximize

i T N 2 1 T ITlogP (Y) - - a - -log(2a )" 2Ym(a)j [y-m(e)] - a a (7)

This leads to the modified likelihood equations

L MT 0 ,(8)

2 -- -

\I  iwhere u is some positive scalar, serving to constrain the norm of •

.FIRST ORDER APPROXIMATION OF

Let us assume that

c. A
i)Z + a; (9)

where a is sufficiently small, so that the following approximations can be

made.

._ m(e) - m(9) + M(9)6; (10)

M(S) - M(e) (1)

'P -The likelihood equations (8) can then be approximated by

1 T m(LM)+v-m(@)-M(8)A1- 48 - - 0. (12)

2

Hence

, T 2 -i T 2
, - [M (e)M(e) + a 01 [M (S)v - a ] (13)

Next -e derive approximations for M(a)&e and for [y-r(8)] . It is

- "-" convenient to use the singular value decomposition (SVD) of M(s) given by

UL M() = U( T) (3.14)

-'. i,' 0



where A(O) is a diagonal matrix of dimension r(q) x r(a) , whose elements

are all positive. The matrices U(s) and V(e) are orthogonal matrices of
dimensions NxN and pxp respectively. We will usually omit the dependence on
e for notational convenience.

Substituting (14) in (13), we can express j; as

(A2 , 2(A 2+a22I2 -
- .-Ir 0 r

-A - V V V . (15)
-- I r

* Also,

U~ U [V2.~;A ] Ur! ~ 2 J (16)A

y-m(e) - m(3)+v-m(6)-M(G)A; v M()A

a-. P(A2+0 UIr ) '  0 aU(A +a IIIr)-iA 0

a U 0 [2(uTY + U vTa

- UAUT v + Ub, (17)

-where

-2 2 2 -1 1F 2  2 2  -1 1
a u(A 2uIr) 0 11 (A +a ir) A 

A(@) -L ; b(o) T L 0
0\ 1 M -. 00

I ..6

-k- AL:
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FIRST ORDER APPROXIMATION OF THE LIKELIHOOD RATIO

The statistic G defined in (4.) is given by

1 T()
G a exp22 y L (y-r (-r!(@))I 1 (19)

It is convenient to define the likelihood ratio as twice the logarithm of

G, i.e., as

Ll {1Tjy_- [Y _ : T (e)] [ !(;)} " (20)

We now use the result (17) to derive first order approximations for L under

H0 and under H1.

Under H0 :

T T 2 T I T 2
L -L {Vv v U A U 2 !L (IM-A i~(21)

where

wU TV (22)

Since UT is orthogonal, w is a zero-mean white Gaussian noise with variance
a . Also note that

A2 2 2 2

2 [2 r) +(23)

Hence, under H, L is approximately a central quadratic form

.~ ~~jq 2 2
r k(Xk +2a2u) wk

Lkkk) 2  (24)
kl (2 +a2 2

Uk +aU
Recall that the rank r and the singular values (il' X 2 X r}I are those of

the matrix M(O) . Note that under high signal-to-noise conditions, i.e.,
2 2

when <<  , we have

7



ri A) (2S)

Thus, L, has approximately a central Chi-squared distribution with r degrees

of freedom.

Under H1:

1 ~TT TLuT(~ wv~ 7(AU T +Z (AU Tv+wJ

2 rq wj (r-)T(r (26)

where 
S Tm( 

7

qa uT * (27a)

10

or equivalently,

[Ir 0]q q -(28b)

The left hand side of (28a) is just the projection of m on the column space

of M. Equation (28b) implies that only the first r components of q are

nonzero. The same is true for Ab , as can be easily verified from (18).

Therefore we can express L in the form

L 1 T (IA2 )L+2(irAW T + T r

r k 2 (29a)

kmil

where

8

* * ~ - - - - - -



I

2,2+2

xk = k I. (29b)
(Xk+a .L

k', .a U) 2 4Ujk (k+ U (29c)

ek

i 1T T 2(2d

7Hence, under H1, L is a sum of a noncentral quadratic form and a bias term.

Note that for high SNR we have 8k = 1, Uk • qk/a and y • 0 . Therefore,

L r wk qk 2

which has a non-central Chi-squared distribution with r degrees of freedom and

non-centrality parameter

qTmq,2 m __M/a SNR. (31)

9
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3. THE GENERALIZED LIKELIHOOD RATIO DETECTOR:

CASE OF UNKNOWN NOISE VARIANCE

In this section we consider a similar problem to the one discussed in the

previous section, except that we now assume the noise variance a2 to be

unknown. Assumptions (i)-(iv) will be made, as before.

The generalized likelihood ratio is now defined as

1;,2(y )
G =(32)

~H

where P (y) is the Joint probability density of function of y , given the
,a2  2 a 2

parameters e and a . The quantities e and a are estimates of2 -2 2 gvnta
e and respectively, while is an estimate of given that

a = 0 . These estimates are discussed below.

THE ESTIMATE ^

Under the assumption that a -0 , the log likelihood function is given

by

N N 2 1 T
log 2 (Y) t' 09o2.r 0 -. Y- - Y2a _

To find a we differentiate (33), equate the derivative to zero and solve for

c2 . This yields

2 1 T (34)

THE ESTIMATES ;2 ;

As explained in the previous section, the likelihood function has to be

modified by a constraint term, in order to avoid unboundedness of a when HO

S is true. We therefore use,

10



.T
log P 2(y) - T S

N N 2 1 1 T" log2wr - F log a - - [Z''-m(e)]T[x-M9(e)] - 'T ue e (35)

The resulting likelihood equations are

^2 1 ATa [Y _ 2!(e)I[y I- ( )1 (36a)

M o(;) ( ) ;2 0 (36b)

When first order approximates are assumed, as in the previous section, it is

found that

A T 2 -1iT 2
S[M (e)M(e) + a Ulp] [M (e)v - a ue]. (37)

This Is the same expression as (13), i.e., a small error in 2 does notAa

change the estimate e up to a first order.

FIRST ORDER APPROXIMATION OF THE LIKELIHOOD RATIO
(p,

The statistic G defined in (32) is given by

G= (2-a .exp{. a (38)

(2 exp()

It is convenient to define the likelihood ratio as the following monotone
function of G:

2 2 2 ^2 -2
2/ a0  a0 -a a 0  a

L2  G2/N  1 =-- - -TZ a2 (39)
a a a 0 - ( 0 - a

where

2 A2 T T ATa1 a(U]la

.11il



2 yT 2 (40)

Using the derivations in the previous section we can write

Under Ho:

r xk (xk , 2a2) wk 2

kiT (x +-)U
k- (Xk (41)

=Nwk 2 r +k2kaJ w1 2 (41
* k-i ~ k(Xk+ w,

where w ,A, x k are as defined in section 2. Note that under high signal-to-

2 2

noise conditions, i.e., when a << X we have

r w

L2 (42)

k.r+i-'

Thus, at high SNR L2 is proportional to a random variable with a central

,Fr,N- r distribution.

Under H1 :

- {(w+ T ()w - (Aw.T(Aw+b}/a

' 2  T =
(w+q) (w+q)/a - ((w+q) (w+q)-(Aw+b) (Aw+b) }/a

r w k 2+

k Ok - +4k (43)
W w +q r w.

,.- . r kk 2 { k- N k 2 Y
W',J



where w ,qA, b , k' "k and y~ are as defined in section 2.

Under high SNR conditions we have: Ok is Il = k1 S Y 0 .Thus,

r w q 2
k + (44)

k=1

Thus, at high SNR L. is proportional to a random variable with a noncentral

Ir,N-r distribution with noncentrality parameter

T T
q q mm (5

Note also that for high SNR and N. we have

1.: 2 2 r(SNR) ,central Chi-squared with r degrees of

freedom

(46)Z

H : 1. 2 (N)non-central Chi-squared and non-centrality
1 2 xrparameter SNR

In general (when the SNIR is not sufficiently large) 1.2 will be a

monotonic function of a ratio of quadratic forms

22

where

13



r 2 2+ 2a 2 )

(kk+ o ) "k 2

H L : k central ratio of quadratic forms
0 2 N wk2

kul

(48)

r wk 2

Hkl -i k uwk  noncentral ratio of quadratic

kL1 k) forms.

PA
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4 THE GLRT IN THE CASE OF RATIONAL SIGNAL

Next we consider the case where the signal m(o) can be modeled as the

impulse response of a rational transfer function, i.e.
1 b(z) - Z,14k N(9

mk T aTz k d , Z ~, ,(9

where
• n-i

b(z) . blz + "'. + bn
7 . (50)zn + a I zn+..*+an "

The polynomials a(z) and b(z) are assumed to be coprime; a(z) is assumed to be

stable. The parameter vector is the 2n-dimensional vector

UT
e a Ca1 , a2 ,...,an,bi,b 2 , ... bnI T  (51)

In order to comply with assumption (iii), we assume that

b(z) - 0 - a(z) = zn , i.e., if all [bk} (bkl are zero, then all (aki are

necessarily zero.
r~~'..'

First we show that assumption (iv) is satisfied for the model (49). We

have

amk 1 zn-ib(z) k-l
T z dz (52a)

iaz" Z-dl (52b)

Hence

n I1"b n z ~2 .Z
"Z: irL No .7= 2,; a(z) k ,(3

so that m(s) is a linear combination of the columns of M(a) , as required.

4Next let us compute the rank of M(e) for 9-0 and for a * 0 . For
'v• -0 we have: ".

15 I
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-r -

amk amk 7 zk'i-dz(
,a =0; 3Z z 6k,.1

Hence

0 0]} N-n

Next we show that r(a) = 2n for all e * 0 . Assume the converse, i.e., that
for some nonzero vector € = [cl,c 2 ,...,c n, d1 , d2,...,dn T we have

n

c zn'-)b(z)0 ) = Izk-1dz
i I M( TV ={ 1 a Z ( z )

2=~( rd zn-t)"

T alz) dz}14krN

"J.J{ d(z)a(z)-c(z)b(z) zk-1 ik (56)

Ir, a 2 (z)

This means that

d(z)a(z) - c(z)b(z) - 0 (57)

for some polynomials {c(z),d(z)} , contradicting the assumed coprimeness of
(a(z),b(z)}

Finally, we note that in the case of a rational signal, the likelihood
ratio under H0 is given by (cf. (24) and (55))

::+2a2 
n Wk 2

42 2

Therefore, under H0 , the likelihood ratio is proportional to a random

variable whose distribution is 2 with n degress of freedom.

16



Similarly, under L2 is given by

2 n

(1+a U) k-1
2 N w 2 n W2

+ 2-+l 2)kzn+ 1 (1+a v) k"1

= u+22 F (59)

(1+a2U)2 1 + (1 1+2a "

(1+a U)

where n
k2

Thus, under H0 L2 is afunction of a

L -. (61)2 n,N-n

Equations (58), (59) can be used to compute the thresholds of the detector for

a specified probability of false alarm PFA

Under H the GLRT L, is a quadratic form (cf. (28)-(31)) and L2 is a

function of a ratio of quadratic forms (cf. (47), (48)). The probability

distribution function of the first can be computed, given the weights

(6,) and the noncentralities (Y,j , using one of the methods suggested in
[3]. The probability distribution function of the second is difficult to

compute in general. In the case of high SNR L2 has approximately an

distribution, cf. (42), (44)::'. n, ,4-n

-. L-.

H : L n,N-n central F-distribution

*H I : L2 - ,:, N-n(SNR) , non-central F-distribution (62)

17..,,oI
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5. NUMERICAL EXAMPLES

In this section we illustrate the performance of GLRT in two test .,

1. cases. In both cases the signal is modeled by the second-order transfer

function

b(z) = baz (63)

a Iz a Zaz+a2

In the first test case a(z) = z2 -1.4z + 0.95 , while in the second case

a(z) = z2-1.3z + 0.75 . The parameter bI was computed according to the
desired signal energy in each example. The parameter b2 is identically zero.

As is clear from the previous section, the GLRT for the case of unknown
variance approaches the one for the case of known noise variance as the number

of data N becomes sufficiently large. Therefore, and due to the difficulty in
computing the distribution of a ratio of quadratic forms, we settled for
testing the case of known variance only.

Besides the GLRT, we examined two other detectors for comparison. The
first is the matched filter (MF)

L i mT( y (64)

where m(e) is the true signal. The matched filter corresponds to a situation

when the signal waveform is known, and represents an upper bound on the

performance of any detector for the detection problem (1). The distribution
.4 of LMF under H0 is normal with zero mean and variance m T ra 2 , while the

distribution under H, is normal with both mean and variance equal to mTm/2

The second detector is the energy detector (ED)

i TLED = . (65)
a

The energy detector does not make any assumption on the signal, hence it

represents a lower bound on the performance of any reasonable detector. It is 2
2

not difficult to show that the distribution of LED is X with N degrees of

N

'7
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freedom. Under HO the distribution is central, while under H1 it is

noncentral, with noncentrality parameter mT n/o2

First we compute the theoretical detection probabilities of the three

detectors as a function of the signal to noise ratio, keeping the probability
of false alarm PFA fixed. For each detector, the corresponding the threshold

was computed by

t -F- 1 FA (66)

where FO( ) denotes the cumulative distribution fuction of the likelihood
ratio in question under H (normal for WF, X for GLRT and 2 for ED). The

0 nXN
detection probability was then computed by

PD- 1 - F t) , (67)

where F ( ) is the cumulative distribution function of the corresponding
likelihood ratio under H1 . The quadratic form distribution of the QLRT was

computed by numerical evaluation of the inverse Fourier transform of the

characteristic function.

Figure 1 shows the theoretical detection probabilities of the three

detectors for the narrowband case as a function of the SNR, with

PFA ' 10 "2 and N x 60. Figure 2 depicts a similar case, except that

PFA 2 
1 0 " . Figures 3 and 4 show the corresponding results for the medium

band case, with N - 10. The SNR is defined here as the ratio of the total
T 2signal energy to the noise variance, i.e., m m/a . Note that the actual SNR

T 2
is m m/(Na2 ) . As expected, the performance of the GLRT is between those of
the matched filter and the energy detector. In the narrowband case, the GLRT

is much better than the ED, while in the medium band case the GLRT is
approximately in the middle between ED and MF.

Next, we tested the behavior of the GLRT by Monte Carlo simulations, and

compared the experimental distributions to the theoretical ones. In each

case, 1000 Monte-Carlo simulations were run. The constraint parameter v was

set to 5 in all cases. Figure 5 shows the theoretical and experimental

19
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distributions of the GLRT under HO . The number of data points N was 50. As

we see, the experimental distribution matches the theoretical one quite well. 6

Figure 6 shows the theoretical and experimental distributions under H1

for the narrowband signal. The number of data points was again 50 and the SNR

was 13 dB. Again, the two distributions are fairly close, except for the C

*bump* in the experimental distribution at low values of L. Observing the

individual Monte-Carlo runs, we found that in some of them the constraint term
"pulled" the estimate ; to relatively low values. This phenomenon is not

accounted for by first-order approximations derived in section 2, and serves

to explain the difference between the two curves.

Figure 7 shows the two distributions under H1 for the medium band case.

The number of data points was 20 and the SNR was 16 dB. As we see, the "bump"

near the origin is now larger than in the previous case. This means that the

effect of the constraint term is now more severe, "pulling' e to low values

more often. The bump causes an approximately constant difference between the

two curves for L > 30.

20
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5. CONCLUSIONS

We presented an adaptive scheme for detecting transient waveforms of

unknown characteristics in white Gaussian noise. The detector is based on a

generalized likelihood ratio test, and uses a constrained maximum likelihood

estimation of the signal parameters. Approximate expressions were derived for

5the distributions of the likelihood ratio under HO and under H1 . It was shown

that in the case of known noise variance the likelihod ratio is distributed as

a quadratic form with the number of degrees of freedom equal to (or less than)

the number of unknown parameters. By comparison, the energy detector is2
distributed as a x with the number of degrees of freedom equal to the number

of data points. Thus, the GLRT performs considerably better than the energy

detector in cases where the number of unknown parameters is much smaller than

the number of data points. In the case of unknown noise variance the GLRT

involves ratios of quadratic forms.

Q1. When the theoretical distributions were compared to experimental ones,

some discrepancy was observed. This discrepancy is attributed in part to the

effect of the constraint term in the maximum likelihood estimator. For

narrowband signals the discrepancy is small, while for medium or broadband

signals it may be quite large.

21
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BOUNDS ON THE ACCURACY OF ARMA PARAMETER ESTIMATION

METHODS BASED ON SAMPLE COVARIANCES

Boaz Porat Benjamin Friedlander

Department of Electrical Engineering Systems Control Technology, Inc.

Technion, Israel Institue of 1801 Page Mill Road

Technology Palo Alto, California 94304

Haifa 32000, Israel

ABSTRACT

The paper considers the asymptotic accuracy of ARMA parameter estimation

methods based on a fixed number of sample covariances. A general expression

for the error covariance of the ARMA parameter estimates is presented. It is
shown that the error covariance is always greater than a certain lower bound,

and that this lower bound is strictly greater than the Cramer-Rao bound. An

explicit ARMA estimation technique that asymptotically achieves the bound is
presented. Finally, it is shown that this lower bound approaches the Cramer-

Rao bound as the number of sample covariances tends to infinity.

This work was supported by the Army Research Office under contract No. DAAG29-
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I. INTRODUCTION

The problem of estimating the parameters of ARMA processes has been

treated extensively in the statistical and engineering literature. ARMA

parameter estimation techniques can be classified into two general

categories: methods that use the data directly, and methods that apply some
preliminary transformations to the data. Among the methods in the first class

we mention in particular the exact maximum likelihood method, and its many

approximations [1]-[41. Typically, such approximations are aimed at

preserving the asymptotic properties of the maximum likelihood method, namely

consistency, asymptotic efficiency and asymptotic normality, while reducing

its computational complexity. Among the second class, probably the most

common approach is to transform the data into a finite set of sample

covariances and then estimate the ARMA parameters from these sample

covariances. References [5]-[7] include examples of this class of estimation

techniques. Most of the system identification techniques used in practice are

based, either explicitly or implicitly, on sample covariances.

In the special case of autoregressive (AR) processes, methods of the

second class are known to be asymptotically equivalent to the maximum

likelihood method [8]. The first p+1 sample covariances (where p is the order

of the AR process in question), while not being a sufficient statistic for the

qAR parameters [9], are known to yield asymptotically efficient estimates of

the parameters via the Yule-Walker equations [8]. ARMA parameter estimation

methods based on sample covariances are known to be less efficient than

maximum likelihood ARMA estimates. This phenomenon can be explained as

follows. At least p+q+1 sample covariances are needed to estimate the p+q+l

4components of e . However, it was recently shown that only the sample

covariances of orders 0 4 z 4 p-q are asymptotically efficient estimates of

the corresponding true covariances, while sample covariances of hiqher orders
are not asymptotically efficient [10). Since p+q+l > p-q+1 for all q > 0,

some loss of efficiency of the ARMA estimates based on the sample covariances

is Inevitiable.

The discussion above naturally raises the question: what is the

' asymptotic accuracy of ARMA parameter estimation techniques based on sample

2



covariances? Partial answers to this question can be found in the

literature. The accuracy of a particular estimation technique, the so-called

high order Yule-Walker method, was considered in [13],[14]. Note that these
references treat only the accuracy of the estimates of the AR part of the ARMA

parameters. The best accuracy achievable by any estimator based on sample

covariances was studied by Bruzzone and Kaveh [15]-[181. They defined a

scalar measure of accuracy and computed its value for various examples. These

results verified the inefficiency of ARMA estimates based on a finite number

of sample covariances.

oIn this paper we present a fairly complete set of results on the

asymptotic accuracy of ARMA parameter estimation techniques based on sample
covariances. In section 3 we derive general asymptotic expressions for the

asymptotic bias and covariance of a general class of ARMA parameter estimates

based on sample covariances. In section 4 we briefly review previous results

on the accuracy of ARMA parameter estimates based on a finite number of sample

covariances, and present new proofs of these results. A lower bound for the

error covariance matrix is presented and is shown to be strictly larger than

the Cramer-Rao bound. A specific estimator which achieves this bound is also

presented. In section 5 we prove that this lower bound approaches "he Cramer-

Rao bound as the number of sample covariances tends to infinity. This result

is commonly assumed in the literature, but has not been formally proven.

Finally, we illustrate the theoretical results by some numerical examples.

In the next section we define the problem under consideration and

introduce some necessary notation.

3



2. PROBLEM STATEMENT

A Gaussian autoregressive moving-average (ARMA) process is 'eifined by the

difference equation

yt a -' akYt.k + u +k1 bkUtk ,(1)

where fu } is a zero mean Gaussian white noise with variance 2 The
t U

polynomial s

a(z) 1 + alz + + ap z; b(z) = 1+blz + ... + b,2

are required to satisfy the followina conditions:

(i) a(z) * 0, b(z) * 0 for all IzI 4 1 , i.e., all the roots of these

polynomials are outside the unit circle;

(ii) a p* 0, b I 0

(iii) a(z) and b(z) are relatively prime, i.e., they lave no common

roots.

Conditions (ii) and (iii) imply minimality of the description (1) of the (iven

process. Under these conditions, the (p+q+l)-dimensional parameter vector

8 - % la s .. -. a b, ...,

completely and uniqely determines the probability distribution of the process

. . ie will denote the set of all admissible values of .j by 9 •

The covariances of (y I are defined by

ayy(n) = yy(-n) Eytyt.} ; -- < n < - . (2)

Let SM (e) denote the vector of , +1 consecutive sample covariances of the
ARMA process whose oarameter vector is a , i.e.

% . . . . . .. .. , --. - % -.



iT

ISM(e) -[yy (0), a yy( ,.,yy (M)]l "  (3)

The sample covariance corresponding to a set of consecutive measurements

{YI' Y2' ... y.} will be defined by

- 1 N(n) a - t 0 n N-1.• (4)

The vector of sample covariance S,. will be defined similarly to SM (e) , i.e.

, - [ay(0 (1). ; • • y(M) l  (5)y y yy

In this paper we will consider estimates of the form

e = g(SM) , (6)

where M ) p+q . The function g(.) is assumed to satisfy the following

regularity conditions:

M(i) g() is continuous, with continuous partial derivatives up to a

third order;

(ii) g(SM) is a consistent estimate of s As is well known, Sm is a

consistent estimate of SM (a) . This, and the continuity of

g(.) clearly imply that

g(SM(a)) - a , for all a _ . (7)

w
- ,

e 
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3. THE BIAS AND THE COVARIANCE OF THE ARMA ESTIMATES

In this section we derive general asymptotic expressions for the bias and

the covariance of ARMA parameter estimates of the class g(SM) defined in the

previous section. We first recall some known properties of the vector of

sample covariances [8, Ch. 8 ].

(i) SM is unbiased,

a(8)

(ii) Asymptotically, the covariance of SM is given by

Cov( S} = N -1 7M(S) + O(N , (9)

where O(N"I ) denotes a term negligible compared to 4. The

elements of 2M(s) are given by Bartlett's formula

=ml MW ayy (k+m)ay {+m) + Z ayy(k-m)a (t+m) . (10)LLM B)k,z km.y m- Yy ,

An explicit expression for ZM(a) was derived in C171 for the

special case in which the roots of a(z) are simple and aoear in

complex conjugate pairs. A more general formula, which holds for

any ARMA process, was derived in [10] and is given in Appendix A

for completeness.

(iii) The vector IT(S M-S M) is asymptotically normal with zero mean and

covarlance matrix :M(e)

The above properties of SN and g(SM) imply the following.

Theorem 1: Both the bias and the covariance of a are asymptotically

proportional to 4 1

Proof: Let o(N "I ) denote a r'ndom variable such that

6
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-1 2rli E{o(N'))2} = 0 (11)

Then, since g(.) has continuous partial derivatives up to a third order, we

can expand its k-tn component gk(SM) in a second order Taylor series,

k gk(SM) = gk(SM) + - SM  (SM-SM)

1.T akgk(SM)-

+ aS-5 M) 2  {SM-SM) + o(N" ) (12)
aSM

Now, using the fact that gk(SM) ek and that SM is unbiased, we get

a2g(S)1
Ej k1 - e = -(iM-sm) S (SM-SM)} + O(N" )

2 as2
M

1 arg(S) +N o (
=- tr{- EI(SM-SM)(SM-SM)T 1-1)o(
2 as2

M

LMr WI + OWN ) (13)
N 2 1as 2 L

where trf } denotes the trace operator. This proves that the bias of e is

asymptotically proportional to N" . Next let us denote by G(s) the

(p+q+1) x (M+1) matrix of partial derivatives of g(S) expressed as a
function of a . Then we get from (12),

COV(e} = j Ei_,)( 3)T I

1 GO -1SMS- I a (
- G() GM-S(a) + o(N " 1

This proves that the covariance of @ is asymptotically proportional to N

Theorem 1 provides us with explicit asymptotic expressions for the bias

and the covariance of ; (equations (13) and (14) respectively). In

particular, we observe that COV{3} is asymptotically dependent only on the

parameters of the given process and on the Jacobian of g(.) . This makes eq.

7
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(14) a useful tool in analyzing the performance of ARMA parameter estimation
alqorithms based on the sample covariances.

The bias formula will not be needed in the seq~uel. Our only interest in

the bias behavior is for justifying the use of the Cramner-Rao bound for

unbiased estimators, as discussed in the next section.

1, 1.



4. A LOWER 3OUND ON THE COVARIANCE OF THE ARMA ESTIMATES

In this section we review briefly some oreviously published results

concerning ARMA estimates based on sample covariance. While the main purnose

of this section is to serve as a introduction to the next one, we have found

it useful to provide alternative proofs to existing ones, due to reasons

discussed in the sequel. Throughout this section, the inequality A > B for

matrices A and B means that A-B is positive definite. Similarly, the

inequality A >B means that A-B is a positive semidefinite matrix.

Let

SM = f(a) (15)

denote the functional dependence of the vector of covariances S on the
M

parameter vector a . Let F(a) denote the (M+1) x (n+o+l) matrix of partial

derivatives of f(.) . Let PM(a) be the matrix

PM() [FT (6) TMI(9)F(e)] " 1  (16)

Theorem 2:

G(e} ZM(e) GT(a) > PM(8) (17)

This theorem can be proven by observing -that the matrix pM (6) is, exceot for

a factor N, the asymptotic information matrix of the sample covariances - see

e.a., [17, eq. (21)]. A direct proof, which does not rely on the asymptotic

normality of the sample covariances, is liven as follows. The consistency

requirement (7) clearly implies that

G(e)F(a) z i , o (VSF,

when M+I > p+q1. Also,

9.d4,



A

M+1 I M(6

p+q+ 0 0 (19)

M+l p+q+l

Hence we have (omitting the dependence on 9 for convenience)

T -MG I TTqT T

L I2  F] 0Z ] [0= FT:.F.1M

JMG I ppq~+

-i FTW0 (20)

Therefore,

FP+q+1 ZMMF) FG'MGT I 1

0I I 'I+q+l I p+q+1 F) I p+q+j

L _jq~ I L'M~ _Tj ~IT~Y

= 0

L 0 T

and finally

T-1- -

_ G(e)jM(a)GT(a)) [FT(e)IMI(a)F(fl] " • (22)

By theorem 2, NP (a) is an asymptotic lower bound on the covariance of any
,estimate = g(SM) . The closed-form expressions for M() and F(e) given

in appendix A enable the computation of this bound as a function of the ARMA

process parameters a , without computing the roots of a(z) as was required in

[173.

10
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We now turn our attention to the relationship between the bound given in
(17) and the Cramer-Rao bound (CRB). For a biased estimate ; with a bias

term b(a) the CRB is aiven by [11, Ch. 41

+O(6 >bB,.l [1e) (23)

COV{}) lip+q+I  eT1  N )p+q+l+ ae I

where IN (a) is the Fisher information matrix corresponding to a (assuming N

measurements) and b.. is the Jacobian matrix of b(a) From theorem 1 we
a6-1

know that b(a) is asymptotically proportional to N_-. Hence the same is

true for ab("). . Also, I (a) is known to be asymptotically proportional to
N [11. Therefore, the right-hand side of (23) differs from I-1(8) by a term

o(N " ) , and we can asymptotically replace (23) by

COV{a} + O(N " ) I-N1 (a) = CRB{q} (24)

This argument justifies the comparison of the bound P (9) to I I(s) rather

than to the bound given in (23) in the asymptotic case. The next theorem

asserts that, for every finite M, PM(e) is strictly greater than the CR8.

J1. Theorem 3:

PM ) > N I-(a) (25)

This theorem follows as a special case of a more general theorem - see Theorem

5 and the corollory preceding it in [161. An alternative proof follows from

Theorem 4 in [101. There is was shown that for all M > p-q,

ZM(S) > N Fr()Il(e)FT(a) . (26)

.Therefore we have (omitting the dependence on a for convenience),

F(FT ) ) -F 'FT1] F, FT T' 'lF I '

[ (FV'~ T I 1LIN.LM M (27)

[FI_ F- rF F F F ',_(27

LL,

"i



Aence

( T,1 Fi (28)

Note that the condition M > p-q implies M > p+o for all q I. The only

exception is q=O, i.e., the case of a pure AR process. Indeed, for AR I
processes it can be shown (using the formulas given in [10]) that

(FT7-IF) = MI- 1  (29)
-p

i.e., estimates of the AR parameters based on the sample covariances .

Sp (e.g., the Yule-Walker estimate) can be asymptotically efficient.

It is not difficult to show that the bound P M() is tight, i.e., there

exists an estimate q(SM) that asymototically achieves this bound. To show

this, let us define

V(X,S.i = r (x) ] Z-~)S (3011

We define i(S,,) to be the value of x a _ for which -1(x.S, ) attains a

global minimum. The estimate e satisfies the consistency condition (7) since
clearly

i ~ ~v(e, sCe)) -- o C(I

i.e., the true parameter e is a global minimizer of V when the sample
covariances are replaced by the true covariances S (a) . Also,

I'm M
IV(xS 1) is a rational function of x and ZM(x) is nonsigular for all

x e ,a Hence the partial derivatives of g(.) exist and are continuous

to any order. The following theorem asserts that the estimate a defined
above achieves the bound P M().

tlote that 7.,x) is a rational function of x, as shown in the aooendix.

12 
'
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Theorem 4: Asymptotic covariance matrix of the estimate defined above is

gi ven by

lim Cov(e} PM(a) (32)

Proof:

By eq. (14), we only have to show that the Jacobian G(a) yields equality

in (17). The first step is to show that the Jacobian is given by

a 2 V(XS M) 2 V(X' M)

G(a) 'S a - x - (33)

2X SMSS ais S M 2SM

The next step is to evaluate the two terms at the right-hand side of (33).

This yields

-2 1 2F(xT) (e) N()F(e) (34a)
;X. xz  S = S N

2
-X,, : -2FT(e)M1(a) (34b)

ax z  S =S M L

G~) rT -1 -T -I
eG() - IFTW _M(e)F(9)]- F (e)ZM (a) (34c)

Finally, when G(e) is substituted into (14), we obtain the stated equality

(32). See appendix B for a more complete proof.

An algorithm of the type discussed here was given in [20], and is closely

related to the one proposed by Walker [5]. This algorithm requires a

considerable amount of computations, due to the need to invert ZM(a) at each

iteration. Thus, it is not necessarily recommended for practical

apol ications.

123



5. THE LIMITING BEHAVIOR OF PM B

So far we have restricted our discussion to estimates based on a fixed

number of sample covariances. In this section we examine the limiting .1

behavior of the lower bound PM(a) as the number of sample covariances M goes

to infinity.

We will show that the limit of PM () is equal to the asymptotic

Cramer-Rao bound. Therefore, the relative asymptotic efficiency of estimates

of the form 0 = g(SM) can be made arbitrarily close to unity by increasing

the number of sample covariances and by using them in an optimal manner (e.g.,

as in the estimate of Theorem 4).

Let us denote

I(e) lim N IN() , (35)

i.e., 1(e) is the limiting information matrix, normalized by the number of

data points. Let (,) denote the power spectral density of the given

process, i.e.,

9(W) = a (m) cos n, . . (36)
m= 

yy

For ARMA processes, the power spectral density is an absolutely continuous

function of w . Also, since b(z) was assumed to be nonzero on the unit

circle, ,(w) is strictly positive for all . Therefore, the elements of

I(e) can be expressed by Whittle's asymptotic formula [20]

= T1.f 21 "(w) 1 d- 1 4 k,z ; p+q+l (37) -'

I (W) aok o

Using this formula, we will now prove the following theorem.

Theorem 5:

lim PM ( ) = I(a) (38) t-

S',

M*4 "



Proof:

Let L2[-i ,,] be the Hilbert space of Lebesgue measurable functions on

[ whose square-magnitudes are Lebesgue integrable. Let H denote the

subspace of L2 [-ir,w] consisting of all real even functions. The inner
p, product of two members of H is given by

<h1(w), h2 ()> = f hI(w)h 2 (w)dw • (38)

For ARMA processes, the spectral density ,(w) satisfies

0 < (W) < 2 < = -n < W r • (39)

The functions ow and 1 a-u all belong to H. Let us'ek  r--7 55 k
define

k( = b(w)cosk,j ; k = 0,12 (40)

The sequence (V k , k 0 01 spans the space H. To see this, suppose that

there exists h(WleH such that

f h(w) 0 b(w)cosk, dw O, ' (41)

Since O(w) is bounded, h(w)O(w)eH . Furthermore, the sequence

(coskw, k > 01 is known to be complete in H. Hence O(w)h(w) 0 and since
i( ) is srictly positive, h(w) - 0 . This proves that (vk(w), k 01 spans

H.

Let (uk(w), k > 01 be the sequence obtained by Gram-Schmidt
orthonormalization of {v kW, k > 01 . From the discussion above it follows

that {U k(w),k o 01 is a complete orthonormal sequence. The two sequences

are known to be related via

U W) W12 () VM 0 (42)

M4 (W vr U=
I((0

" " . .. .. .. ! N"""w"w" .r . " .."" " " "" "" ,' ,," "" " " ' " ,



;;4

where Wm is the Gramian matrix of {vk(), 0 4 k 4 M and W / 2 is its lower

triangular square-root. Recall that the Gramian matrix is given by

(WM)k, <Vk(w), v ()> • (43)

Next note that (see e.g. £8, p. 465, Theorem 8.3.3])

[.M(8) ]kt = a MN.COv{a y(k), a t)}

1 ,2 ( ) cos kwcostd = v W dW (4

- _ ,[ (~jc~skwCO w = fvk(w)vk(w)dw = <vk("), vL(A)) . (4)
S-ir -it£

Hence the Gramian in (42) is just SM (a) , i.e.,

= WB M > 0. (45)
M  ,4*

Let us now turn our attention to the entries of the matrix F. We have

ac (nI)
=(w)cosnwdw) = c ae k

@8k  .Te (46 )

7T a.'w) ._.()cosn. d. <(w), vn()> (46)

f [ -- -where

.(47)

2 /Vt O( w) 

(47)

Similary,

.1 aa (n)

- <66), v W>) (48)1

where

66w) = / ()4(49)1

16



Using (16), (42), (45), (46) and (48) we see that

[-1 
M 

,M

ePM(e)]k £ 0 0 <a(w),vm(c)>[Z (e)]mnn <W(>)Vn(w)>

M
= E <a(w),u m(w)><lW),u m()> = <aMq(w),M(W)] . (50)
m=O

where ca(w) and SM(w) are, respectively, the projections of a(w) and 5(w) on

the subspace spanned by (Um (W), 0 4 m 4 M}.

By Whittle's formula (37) we have

z WC

k,) f I 1 3(w)* i 1 (') = <a(,), 8(w)> (51)k' -7 2/7() aek 2V7 O(w) all

Thus, it only remains to show that

lim <aM(w), SM()> = <a(w), 3(W> . (52)

By the completeness of {u(w), m 0} we have (omitting the dependence on

for convenience)

IkaM. SM> - <a,~ 8>1 I kam,am> - <am,4 8>1

+ O<c, 8> - <1. 0>1 - k<N, SM'B>I + S< M'-' 8>1

! IQM1*BM-6>I + Mm -mm1 M 0 (53)

This completes the proof of the theorem.

Remark: It is clear from the proof that the theorem is not restricted to ARMA

processes. In fact, the following conditions are sufficient for the theorem

to hold.

*' (I) The process power spectral density *( ) of the process satisfies

S(39).

W% 17
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(ii) The partial derivatives a,(wll3e k belong to L-wi] .

(iii The partial derivatives are sufficiently regular to allow

interchange of the differentiation and integration in (46).

I'

"a
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6. SOME NUMERICAL EXAMPLES

In this section we illustrate the behavior of the bound (16) as a

function of the number of sample covariances M, by two examples. In both

examples the ARMA processes are of order (2,2), with a pair of complex zeroes

and a pair of complex poles. the zeroes are at angles *45° with respect to

the positive real axis, and the poles are at angles *1350. The absolute

values of both the zeroes and the poles are (0.5)"I/2 in the first example
-1/2

and (0.9) "  in the second. The corresponding polynomials are
b l) -z+0.5z2

b~z) . (first example) (54a)
b = +z+O.9z5

b(z) 1-1.273z+O.9z 2  (second example) (54b)-- +i.273z+O.gz 2

In the first example we computed the bound up to M=20. The bounds on the
standard deviations of a1, a2, b1, b2 are shown in figures la, lb, Ic, id
respectively. Also shown in the figures are the respective Cramer-Rao bounds

(standdrd deviations) on the parameters (the horizontal lines). As we see,
for M o 12 the bound is practically indistinguishable from the CRB. For M=4,

the minimum possible number, any ARMA method based on sample covariances would

be quite inefficient.

In the second example we computed the bound up to M=50. The results are

shown in figures 2a, 2b, 2c, 2d. As we see, the effect of moving the poles

towards the unit circle is to enhance the relative efficiency of the AR

coefficients. On the other hand, moving the zeroes towards the unit circle
results in a slow decrease of the bound on the MA coefficients. In this

example, even at *50 there is still a considerable gap between the bound in

and b and the respective CRB's.
1 2
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7. CONCLUSION

In this paper we presented expressions for the asymptotic accuracy of

ARMA parameter estimation techniques based on a finite number of sample 4

covariances. The error covariance matrix of any estimation technique of this

class is bounded from below by a bound which is strictly larger than the

Cramer-Rao bound. Furthermore, this lower bound is tight: it can be achieved

by using the specific ARMA estimation method given in section 4. It was also

shown that this lower bound approaches the Cramer-Rao bound as the number of

sample covariances tends to infinity.

Finally we remark that the results presented in sections 3 and 4 can be

easily generalized to the situation where only a subset of

4 {yy (O),...,ayy(M)} is used. All that needs to be done is to delete

appropriate rows and columns from the matrices r (e), G(e) and F(e) . The

variance expressions remain otherwise unchanged. However, the results of

section 5 will no longer be valid: discarding some of the sample covariance
will generally cause loss of efficiency. See [15IC171,CL81 for the case

where the set of sample covariances starts at the k-th lag, rather than at the

zero-th lag.

-I A
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APPENDIX A: EXPLICIT EXPRESSIONS FOR F(e) AND z '(9)

In this appendix we quote, without proofs, some results derived in

E10] Let us first introduce some notations as follows. Let {r x(zrw

and {r yy()} be the coefficients in the Laurent series

1 rxx(.0zZ I, 1 -= rxw(z)z ;

a(z)a(z " ) z-. a(z)b(z " ) =.

(Al)

b(z)b(zt) = (Al)

a(z)a(z ) L=--

Let RijjR 1'j(2 and R~'j(z) be the lxj Toeplitz matrices
£ ,n .•x

iR rxx(I-m+n) x j) -rxw(z-m+n).

.%

R ( I } = r (z-m+n). (A2)
. yy ',n yy

Let A and B be the pxp and qxo companion matrices

dak ; =l,nk k m-1z, flk
(A} = 1 ;mInl ; (B} = ; m=n+1 (A3)mrnnlo ; othrwisen I ohrws

}n 0 ;otherwiseotherwise

Let H be the (M+q) x (M+q) Hankel matrix

m+n = M+q+l
a  m+n = 4+q+k+l , k p. (A4)

0 otherwise

Let J be the (M+l)x(M+l) matrix

. I ; m+n =M2

0 ; otherwise
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Let ei be an i-dimensional unit vector with 1 in the first position and zeros

el sewhere.

Finally, let K be the (M+t)x(M+l) matrix defined by

K = H(RM+qM+l(M+Q) + ,M+ (A6)

yy yy

Then we have the following results.

Lemma 1: The matrices Rxx (0) and Rw (u) satisfy the matrix Lyapunov
xx xw

equations

p T T
RP'P(O) - ARx (O)A = e (A7)

xw xw q

These Lyapunov equations admit rational closed-form solutions as

exolained, e.g., in [12].

Lemma 2: fr ()1 and {r W(} can be computed for all z > n using the

solutions to (A7), (A8), and the recursions

- p
r() = ak r (1-k) ; r (z) - akr (t-k) ; x > p (A9)xx k xx xw k.= k xw

k=1 k=1

Hence, the matrices Rij( and R () can be computed for any desired

values of lj and t.

Lemma 3: Denote by vaSM the matrix of partial derivatives of SM with respect

to (al, a2  ... ap} , and similarly for 7bM. Then

2 T M+q pA)
7 c "K xx ( 0 )

2 T (All)
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IMUM

asm4
- 7 (A12), 
aqU  a u

Then the matrix F(q) is given by

S V,

rM •
Fs) - 7 S, bSM] (A13)

e.ma 4: The matrix r, 1 )is given by

Z(9) 2S ST R au  , ( )K (A14)

5'.
-. %.

'%"5

s.a

h
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APPENDIX 3: PROOF OF THEOREM 4

It is sufficient to evaluate G(e) and then compute the corresoonding

value of the riaht-hand side of (14). Since j is a global minimizer of

V(xS)aV(x,S)

ax x= "0

Let us now perturb S, by a differential amount dS , and let e + de be the

global minimizer of V(x,S M + dS) T hen

4 V(x,S M +dS!I)Bxx= + = 0 .(B2) "

ax
x=e+de

aV(xS M+dSM) x -V(xS) x

aXx=;+di

2 a2 aa V(x, S,) a + dx, (3)

ax? x d; ax 

(I3)

Using (BI) and (B2) we get

v~~x 2v~,.

d a aV(xS ) j a 2vx') ]
ax x=6 axaSM (4)

Therefore, the matrix of partial derivatives of g(.) is given by

2  2= xS x
.4.

IL"2 2 5.-

axI=93-i - -l

V(XS~) ~e L- ax A x-j (
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g i4ext we evaluate the partial derivatives appearing in CB5)

av as m Wx T I as m(x)
-X z E 1 )S(X - mj [ Sm4(x)-imi 11- (x[ a x kkk

- (x)-sM] T x M X Cx)FS,~(x)-sM (M6)

a 2 2
a V aX Lax aX) 11 (x)[S9(A)-im]
k t Lak aXM

Ix N (x)[ ax)-

+{ax k a x ] m ax ] M x[ x

s m T,)-1 as (x) -1 ~x as 1x 2~xax k ax L aak (X)[) -ax ax

al: aasx (x 2

arjX)^MTIx m i~~ aM -1 -1jSa x)-SM

, a +Fx 1m x)-x LCx)LM r ()a~

2

-S,(X)-iS,] (U x) ax kax ~ mi x[~1 x- 9

T--I 3IM~x),- ______

+ .Cx 1 aS.1(x) .4)[

M(x)[ a~ x3
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3S,,(x) ,.- , 2 (x OM(x) 1
2[ ar LM x) a M ( S iaxk aSrl k k

Recall now that in (14), G(a) has to evaluated at the true values of

and ' i.e. at i = 9 and S SM(s) . Substituting in (B7) and (B8) we

see that most of the terms vanish and we get

2 as Wx SMx5" = 2 [_____jr '( ) ].
aj= 2F ~ xe~i [ 'xB ax-I L: T x :JX 9 2I ax Jx:8

., T T(a) -1(a)F(e) (39)"r:

.4

a 2 =2 -2[ ix=q 7 ) T (BIO)S x =Ix9 M-M

axl"

'. Finally we get,

G(9 (F T I F)- I F7 (B11)

and

(F T -1 F- 1FT- - -1 F-1I
G(e)lM() :G (F= F F) F ZM ZMZM F(FMF)

= (FTM F) (F MF)(F TMF) 1

T 1 -1( F (e)M()F(B)]- (B12)

%''
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THE EXACT CRAMER-RAO BOUND FOR GAUSSIAN AUTOREGRESSIVE PROCESSES

Boaz Porat Benjamin Friedlander
Dept. Electrical Engineering Systems Control Technology, Inc.
Technion-Israel Institute of 1801 Page Mill Road
Technology Palo Alto, California 94304

Haifa 32000, Israel

ABSTRACT

An explicit expression is derived for the Cramer-Rao bound on unbiased

estimates of the parameters of autoregressive processes, given a finite number

of measurements. The expression converges to the well-known asymptotic form

of the CR8 when the number of measurements tends to infinity. The behavior of

the bound is ilustrated by some numerical examples.

A,

L This 'work was supported by the Army Research Office under contract no. DAAG29-
* 83-C-0027.
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1. INTRODUCTION

Autoregressive (AR) modeling techniques are widely used for spectral

analysis, estimation/prediction of stationary time series, and adaptive

filtering. Numerous algorithms have been developed for fitting AR models to

data. To evaluate the performance of AR techniques in different applications

it is often necessary to evaluate the accuracy of the AR parameter estimates

obtained from a given amount of data. Asymptotic analysis of AR parameter

estimation accuracy is a relatively easy task, since the AR model is just a

special case of linear regression, except for the initial transient. In

particular, the asymptotic Cramer-Rao Bound (CRB) on any unbiased estimate of

the AR parameters is well known [1]: it is just the inverse of the covariance

matrix of the process, divided by the number of measurements.

For short data records, the actual CRS differs from the asymptotic

expression, due to the initial transient of the linear regression. In this

note we derive an explicit expression for the Fisher information matrix
associated with a finite number of measurements of a Gaussian AR process. The

information matrix is shown to be the sum of a constant matrix and the matrix

appearing in the asymptotic approximation. The CRB is then given as the

inverse of the information matrix. It is shown that the exact CRB can be

.either larger or smaller than its asymptotic approximation, depending on the

process bandwidth. In particular, narrowband processes tend to have CRB's

which are considerably smaller than the respective asymptotic approximations. JI
In the next section we derive the formulas for the exact CR8, and in

section 3 we provide some numerical examples illustrating the behavior of this

bound.

m.- It should be noted that the CR8 is not necessarily a tight bound for a

.,'4 finite numer of data points. Thus, the best achievable parameter estimation
. accuracy may be considerably poorer than predicted by the CRB when the number

of data points is small.

*V 1
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2. DERIVATION OF THE EXACT CRB

U Let {yt) be a n-th order stationary Gaussian AR process, defined via the

difference equation

n
Yt 11" akYt k  ut (

where (ut} is a stationary zero-mean Gaussian white noise with variance
22 Let us denote the process covariances by

rk a r-k . E{yt Yt-k a -,a < k < (2)

The covariances are known to satisfy the so-called Yule-Walker equations

In- d2 I . 0

r +I akr 3 -k (3)

ki

Let R N denote the I x N symmetric Toeplitz matrix (where N > nmN

(RN)i,j = 'i-i 1 j ij N (4)

Also denote

SN R- (5)

,* The following three lemmas will be needed to derive the main result.

Lemma 1: The matrix (a2)'1RN admits the Cholesky (lower/upper) factorization

( 2 'R- L,1 LT (6)

where

2

dS



n N-n

-N _.n a-° - } I"
L ' 1 0

a1 (7)]nj N-n
0 "a n . . ..a I  1

and L-1 is the lower Cholesky factor of R
n n

The lemma is proven by computing ( )' ILNR N and using eq. (3). The
result turns out to be an upper triangular matrix with l's along the diagonal

elements starting at the (n+l,n+l) position. Equation (6) then follows from V

the uniqueness of the Chloesky decomposition.

Lemma 2: The inverse covariance matrix Sn( a R1 ) is given by the expression

SnE z (A A T _AA) T (8)

where AI and A2 are the lower triangular Toeplitz matrices

i-j a.. i j
(Al)i,j a i-j ; i > j ; (A2)i,j = (9)

1 ; i<j 0 ( Aj)

This is the so-called Gohberg-Semencul formula, proven e.g., in [2].

Lemma 3: Let Y be a zero-mean Gaussian vector whose covariance matrix

A depends on a vector of parameters e of dimension m. Then the mxm Fisher -'

*. information matrix of Y is given by

;)k 18A ( ) A(S) a,

*where tr(.} denotes the trace operator.

This formula can be obtained by direct computation, or see e.g., £3).

3
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We now state and prove the main result, as follows:

Theorem 1: The Fisher information matrix corresponding to N consecutive

measurements of the given AR process (where N > n), is given by the exact

expession

(2 4)-i ]
N (N-n) - - (11) N 0 , 2 )-i, 1

1. n
where J is a constant matrix whose elements are given by

(G - (2a )-in (12a)

Mf), Mf~~, .(2a2).ltr aS{_ (2b

akM -t - R n' (12c)() -tr

klil 17a n 5an(Jk+1,± 1 2 {~~~in

Proof,: By (S),(6) we have

SN (a2)-1 LT LN (13)

Hienc e

aSN 4 -IT
7 - -(4) LN (14)

aa T
aSN 2 )-I aLN 2 1 N

Ta LN N (o) aa(5
ic k

as N  2 -
N IN (16)

as a ~ LT, r 8LN

invariance under transposition) we get:

4



1 t S% a 8 SN ( 41CA
i t{ RN RN} = (2 r{N (18)

1 =SN 2
1 tr { - RN - RN} trL-

ka

L - 8LN 21 LN N=tr (L;- L; -- } + ( )1tr{ [ a.' RN (

tr(LN ~iN aa a. RN ((20)~--i-

Now, the partial derivatives of LN are given by

Zn, Z N-n (21

where Zm is the down shift matrix.m

(Zm)ij i-j(22)
otherwise

Since both LN and its partial derivatives are lower triangular, and since the
last N-n diagonal entries of a.N /aak are zero, we get

- ILN nK

NN

1LN L 1 -1(
~~~ ' tr{ L - L- (4

Nak .4a ak n aa

g5

......................................................9~''9'~'9



Also,

JT

L a, ,a, aa RI n R 125

r R

r II

iL LR L r 1 J1aL L T 8LL ~ T 0 R '

lLn -n R n n~ak a n1 a a 12
k- - - - -~ n Ink IRN (25)

L 0 '0

Hence

* fr ra:Ln  - - a tr- _NR {. Rn + (Nn)r ( (26)

' inly e e tha (I0 and a (18 yiel (26)(I) 1) 23 i

K k

Substituting (24), (25) in (20) yields

1 a s s N
-trf a 3a N RN}

qrL- n ri L I -2- tr n =f R I} (a 2) (N-n)rk (27)

Finally we see that (10) and (18) yield (1a); (10), (19) and (23) yield

(12b); and (10), (20) and (27) yield (12c).

Corollary- The exact Cramer-Rao bound on any unbiased estimate of the AR

parmeer i gve Ib where JAis given by (11), (12).

Commnents:

(1) Note that formulas (11), (12) are actually closed-form expressions
-.' for J1 " Rn  is given by (cf. (8))

,i1
N n

6F

~ i- - . - -,



Rn  a (AjA - A2A ) , (28)

while 2 is given by

T- 

n

F- = (a (ZkA + AlZk .Z -kA2  A2 Zn-k) (29)

(2) When N -- , the constant matrix j in (11) becomes negligible with

respect to the second term. Hence we get the well known asymptotic

result [1]

p0

lir N- ( '] (30)
N~~m 1'N

(3) The difference between the exact information J N and its asymptotic
approximation (30) is not necessarily either positive or negative

definite, but can be indefinite in general. Therefore the exact CR8

of the AR parameters for short data records can be either larger or

smaller than its corresponding asymptotic approximation. Some

examples are given in the next section.

7
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3. SOME EXAMPLES

2 Let us first consider the case of first order AR process with parameters

{(aa} . In this case we get*

E N a

JN a 2a2  N-1 (La (1a) (1-a 1-a+

It is of interest to examine the ratio of the exact CRB's on 2 and a to

their respective asymptotic approximations. We denote by bN(k) the exact

CRB of the parameter ek , and by bN(e) the asymptotic approximation of the

bound. Inverting the matrix in (31) and using the diagonal entries of the

inverse we get

bN(02) N(N-1)(Ia2) + 2Na 2  (32)

. N(- N(N-1)(1-a ) + 2(N-1)a

bN(a) N2 (1-a2 ) (33)
@-.

FN(a) N(N-i)(I-a Z) + 2(N-1)a 
.

Eq. (32) clearly implies that the ratio of the bounds on is always greater

than 1, i.e., the exact bound approaches the asymptotic bound from above.

From eq. (33) we getqbN(a) (4

--~a)< 1 if and only if jal > (34)

N (a)
Thus we distinguish among three different cases:

(i) jai > (2)"1/2 ; In this case the exact bound on a is always

smaller than the asymptotic bound.

la < "  in this case the exact bound is always greater

than the asymptotic bound.

*This formula was also given in C41.

Js- 2



(iii) (3) " 112 (al . (2) " 1/ 2 ; in this case the exact bound is greater

than the asymptotic bound for small values of N, and then changes

direction and becomes smaller than the asymptotic bound for large

values of N.

A similar behavior is observed for second order AR processes. The explicit

formulas are too complicated to analyze by inspection, so one has to resort to

numerical evaluation of the CRB's. We tested several second order processes

with complex poles of varying magnitudes and a constant phase angle of 45".
Figures 1, 2 and 3 show the results for 2the three test
cases specified in Table 1. afr

Table 1: Three Test Cases of Second Order Processes

rest Case a2 a1  a2

1 1 -1.378 0.95
2 1 -1 .183 0.7

3 1 -0.447 0.1

Case no. 1 corresponds to a narrowband process, while case no. 3 - to a

broadband process. As we see, the exact bound on a2 is always greater than
the asymptotic approximation. The behavior of the bounds on the AR parameters

aI and a2 depends on the nature of the process. It appears that for
narrowband processes the exact CRB's approach the asymptotic approximations

from below, while the opposite is true for broadband processes. In case no.

2, which represents an intermediate bandwidth process, the behavior of the

bound changes direction as N increases.

9



A 4. CONCLUSIONS

An explicit formula was derived for the Cramer-Rao bound on unbiased

estimates of the parameters of Gaussian AR processes. The formula contains a

term linear in the number of measurements, plus a constant term. The

additional constant term is indefinite in general, so the exact CRB can be

either larger or smaller than the corresponding asymptotic approximation.

A common problem in random signal processing is that of estimating

narrowband signals from short data records. We have demonstrated that in such

situations, the actual CRB can be much smaller than the asymptotic

approximation. It is therefore recommended that in analyzing AR algorithms

,-7" for short data records, comparison should be made to the bound derived here,

rather than to the more commonly used asymptotic bound.

We finally note that the result derived in this note apparently does not

, 6 carry over to moving-average and ARMA processes. These two models are not

linear regressions, hence the information matrix is not likely to depend

linearly on the number of data points. Formula (10) can still be used to

j compute J for any desired value of M. However, the amount of computations is

proportional to , so this may not be convenient in practice. Asymptotic

CRB formulas for the ARMA and AR-plus-,4oise cases can be found in C5].

10
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Figure 1: The Ratio of the Bounds on 2

Figure 2: The Ratio of the Bounds on a 1.

Figure 3: The Ratio of the Bounds on a2.
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ON INSTRUMENTAL VARIABLE ESTIMATION OF SINUSOID FREQUENCIES
AND THE PARSIMONY PRINCIPLE

Petre Stoica, Benjamin Friedlander, and Torsten Soderstrom

ABSTRACT

Mulitple sinusoids in noise can be modeled as an ARMA process with the AR

parameters satisfying certain symmetry relations. According to the "parsimony

principle" the constraints on the AR parameters should be taken into account

to get improved estimation accuracy. It is shown in this note that when

estimating the AR parameters by a general instrumental-variable method, such a

.-x parsimony does not necessarily apply. However, the parsimony principle does

hold when an optimal instrumental-variable method is used.
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1. INTRODUCTION

A sinusoids in noise process obeys an ARMA equation of a special

structure [1,2,11]. In particular, the AR parameters of this ARMA equation

possess a certain symmetry property [1,5,11]. Taking this symmetry into

account should presumably result in improved estimation accuracy. Since the

AR parameters contain complete information on the sinusoid frequencies, their

accurate estimation is important.

A frequently used technique for estimating the AR parameters of an ARMA

is the MY method [1,2,3] which is closely related to the more general class

of instrumental variable (IV) methods [14]. Within this technique, the

symmetry which the AR parameters must satisfy may be ignored [2,3] or taken

into account [1,5,11]. The computational burdens that result in either case

are comparable [5]. However, we may expect that better accuracy should be

obtained in the second case. This would presumably follow from the so-called

"parsimony principle" [8,9].

Our aim here is to investigate this conjecture. Taking into account the

symmetry of the AR parameters may lead often to improved estimates. However,

we show by means of a counter-example that this is not always true, contrary

to what is sometimes stated in the literature [11]. We also show that if an

optimal instrumental variable method is used (closely related to the MYW

method with an optimal weighting matrix) then the parsimony principle does

hold.

2. MAIN RESULTS

Consider the following sinusoidal signal

x(t) = ak sln(wkt + k)  (2.1)
k=1

2 , .

iirA



where

ak 'k R, wk £ (0, ,

W W. for i * j

Let y(t) denote the noise-corrupted measurements of x(t).

y(t) = x(t) + e(t), t = 1,2,..., (2.2)

where e(t) is a sequence of independent and identically distributed random

2variables with zero mean and variance 2. We assume that x(t) and e(s) are

uncorrelated for any t and s.

As is well known, x(t) obeys the following autoregressive equation

I [, 2, 11,

x(t) + alx(t-l) + ... + anx(t-n) = 0, n 2m (2.3)p
where (a1 I are defined by

1 + az + ... + a nn = n (1 - 2 cos wk z + z2  _ A(z) . (2.4)1 n k=l

Since A(z) has complex-conjugate unit-modulus roots, we must ha,,

aI , an-i, i = 0, ..., n, (a0  - 1) . (2.5)

i" It follows from (2.2) and (2.3) that

n3



A(q" ) y(t) =MA-q')e(t) (2.6)

which can be written as

y(t) 0 ,T(t)e + A(q" ) e(t) , (2.7)

where

O(t) = -[y(t-1) ... y(t-n)] (2.8)

T Ae = [a, ... an]

If the constraint (2.5) is taken into account, then (2.7) becomes

y(t) + y(t-n) = ,T(t) a + A(q" ) e(t), (2.9)

where

(t) = -[(y(t-1) + y(t-n+1)}, ... , (y(t-m+l) + y(t-m-1)}, {y(t-m)}]T

T
i-[a, ... am) . (2.10)

Consider the following instrumental variable (IV) estimates of e

(i) Unconstrained IV estimate

1 T 2-

= arg mino[ - t z(t)Tt -" 1 t

L [ N ~ > 0 (2.11a)

4



where N denotes the number of data points and z(t) is the IV vector given by

z(t) = y(t-n-1) ... y(t-n-M)1T M n .(2.11b)

or equivalently, 3is the least squares solution of

1/2 1 z T) (t] 1/2,1~:L Z W ~ = Qz~ t ~ ~ t)](2.12)t=1 t 1

(ii) Constrained IV estimate

Note fromi (2.5) that

V= U + e 2m (2.13a)

where

e k =0 0' 1 1 unit vector of length k (2.13b)

and

1* *

0 1U =1 0 , (2m x m) (2-13c)

10. . . . . 0

The constrained estimate is defined by (2.11), under the

constraint (2.13). Thus,

N NT2
rgi LN - z (t)~ Ct) - - zt)(yt+yt-n) )1

5N



T4

T (t) T ¢T(t)U

(2.14)

e=U a + e2m

or equivalently, a is the least-suares solution of

1/21 N T 1/24 N (.5N ZlZ N

Note that by the transformation in (2.13), we have converted the constrained

optimizition problem for e into an unconstrained optimization problem for

a (2.14). We could also have obtained e by using the results of the theory

of least-squares regression with linear constraints [131. However, the

formula provided by this theory for ^ , though equivalent to (2.14), is more

complicated [12,13J.

The IV estimates (2.11) and (2.14) are asymptotically equivalent to some

MYW estimators which are easier to implement. There are various interesting

S computational issues related to (2.11) and (2.14), or rather to the

asymptotically equivalent MYW estimators, for which we refer to [1-5, 10, 111.

We are interested in comparing the accuracies of the two estimates

e and e . To do this we rely on the followinq asymptotic results which

follow from the general theory developed in [6][7][12]. The asymptotic

distributions of the normalized IV estimation errors are given by:

/N distribution
----e-e) N- > .V (0, P;) (2.16)

where

4q 6



AJ

P = (RTQR)-IRTQSQR(RTQR)-, (2.17)

eT

R = E(z(t)T (t)} , (2.18)

S E(A(q- )z(t) A(q )z (t)} =

E{A(q "I  A(q'l)[e(t-1) ... e(t-M)]l} (2.19)
e(t-M)

and

N ) distribution O
-T- cz N>A(0, P) (2.20)

where

p_ (iTQR)-l RTQSQi(RTQR)-, (2.21)

R - E(z(t) ,T(t)} - RU . (2.22)

The last result implies that

VN distribution (2.23)•~~/ (0, P'- (2.23) +

where

P: U P. UT U(UTRTQRU) 1UTRTQ SQRU(UTRTQRU)- 1uT (2.24)
a .7

7



The covariance matrices P and . depend on Q. It can be shown [121, [151

that P and P: are bounded from below by

(RTs IR) "  (2.25)

and

= u(uTRTsUR U)-IuT (2.26)

Furthermore, it is straightforward to show that the lower bounds above are

attained for

Q = S (2.27)

The IV estimates (2.11), (2.14) with the optimal weighting matrix above are

called optimal IV estimators. For a discussion of their implementation see

[121,C16).

The above covariance matrices are useful in evaluating the performances

of the two estimates (2.11) and (2.14) in specific cases. For the case of

"standard" ARMA processes, an extensive analytical study of performance of the

MYW estimators has been reported recently in [4]. For the sinusoids in noise

process, no similar study of performance of estimates like (2.11) and (2.14)

appears to be available in literature.

The question we want to address here is whether P > P- . First we note
e e

that the problem under study is related to the theory of least-squares

regression with linear constraints. For Q = I, P and P- can be interpreted
e

as the covariance matrices of the constrained and unconstrained least-squares

8



.estimates of the parameters of a regression model with R being the "regressor

matrix" and S being the covariance matrix of the residuals. It is then known

that P > P- if S=I [13]. It was conjectured in [11] that p. > p- also for
e a e e

the case under consideration where S * I (and Q=I). However, no formal

analysis of the case S s I seems to be available in the literature.

In the following we show by means of a counterexample that for S * I and

Q = I the inequality P. P: does not necessarily hold. Note that
8 8

P > P- implies that
0 0

s..p.= [I,0]P lin [I 0]P: I I= P. (2.28)

The next example shows that P > P does not always hold, thus contradicting
CL

the inequality P > P.

Example: A Single Sinusoid-in-Noise Process

We evaluated the covariances P. and P for Q I,

2 = a a

M = 1; /" ; 1 = 0; = 1; M = 2, and w1 I0.12w, 0.88w]

To evaluate P. or P. we need to compute the covari.3nces of x(t). These are

0 a

given by the well-known formula [10,11]

2

E~x(t) x(t+k)} = 2 -jcos kw (2.29)

In Figure 1, we plot log T. and log P. versus . For w < 0.2w and

w> 0.8v , the IV estimatea(2.14) hasmiuch hetter accuracy than (2.11). The

poor accuracy of (2.11) for such values of w was expected since the matr~x

RTR in (2.17) is nearly singular for w close to 0 or .

For w in the range [0.2r, 0.8n] , the accuracies of the two estimates

9



are comDarable. Moreover, for w in the intervals shown in Figure 1, the

estimate (2.11) is more accurate than (2.14), which concludes the counter-

example.

Next we show that the parsimony principle does apply to the case of

optimal IV estimates, in the sense that

• Pt (2.30)
e e

This follows from the theory of least-squares regression with linear

constraints for the case of uncorrelated residuals [13]. The materices

P. and P: can be interpreted as the covariance matrices of the constrained p.

8
and unconstrained least-squares estimates of the parameters of a regression

with S-1/2R as the regressor matrix and with uncorrelated residuals. For the

case considered here we have a simple proof of (2.30) which we include for

completeness.

Proof of (2.30):

< --- > RTS'R - (RsR)U(UTRTS'IRU) lUT(RTS 'R) > 0
e

T 1 [1 U
<=- (R s- R)[IU 0

<- u T (R Ts-1R) U T(R T s-1R)u_

3. CONCLUSIONS

It was shown that the parsimny principle does not hold in general when in

IV (or MYW) method is used to estimate the parameters of sinusoid-In-noise

type models. However, when an optimal IV (or an optimal MYW) method is used,

the parsimony principle does hold. This result is interesting from a

theoretical standpoint and helps to clarify some conjectures made in the

10 '
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literature.
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ABSTRACT

This paper considers the problem of estimating the parameters of

continuous-time stationary Gaussian processes with rational spectra, from

uniformly sampled measurements. The sampled process is shown to be an

autoregressive moving-average process, and explicit relationships between the

parameters of the continuous-time and the sampled processes are derived.

"* These relationships are then used to derive a lower bound on unbiased

-U estimates of the continuous-time parameters, and on the generalized variance

of such estimates. It is shown by some examples that the bound on the

generalized variance depends on the sampling interval in a non-monotonic

manner. In particular, for each specific set of parameters, there exists a

sampling interval for which the lower bound is minimized.
4
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1. INTRODUCTION

Digital processing of continuous-time signals involves the sampling of

these signals. Most often the sampling is uniform, i.e., the sampling

interval is constant. In some cases the user is interested in modeling the

sampled signal, rather than the original continuous-time signal, while in

other cases a model of the continuous-time signal is required. A typical

situation is that of a signal generated by a physical system whose

mathematical model is known, but whose parameters are unknown (such as a

mechanical system with unknown masses, viscosities and spring coefficients).

In such cases the primary goal of the digital processing is to identify the

parameters of the original continuous-time system.

In this paper we consider a special class of continuous-time signals:

stationary Gaussian processes with rational spectra. It is well known that

uniform sampling of such processes gives rise to autoregressive moving-average

(ARMA) processes of order equal to the denominator degree of the spectral

density of the continuous-time process. The achievable accuracy in estimating

the parameters and the power spectral densities of ARMA processes was studied

in [1],[2]. In this paper we give quantitative answers to the following

questions: i) What is the achievable accuracy in estimating the parameters of

the continuous-time spectral density from the sampled ARMA process? ii) How

is the achievable accuracy affected by the choice of sampling rate?

We assume that the number of data points of the sampled signal is fixed,

i.e., that the total interval over which data are collected is proportional to

the sampling interval. This is a reasonable assumption since it is often

a desired to process data in batches of a fixed size. We also assume that the

parameter estimation method used is unbiased, at least asymptotically (e.g.,

the maximum likelihood estimator). Under these assumptions, we show that the

lower bound on the generalized variance of the continuous-time parameter

estimates is a non-monotonic function of the sampling interval. Consequently,

for any given set of parameters there exists a sampling interval for which the
generalized variance is minimal. The range of sampling rates for which the

generalized variance is nearly minimal (the flat region of the curve) can be

small or large, depending on the characteritics of the given signal.

2



The outline of the paper is as follows. In section 2 we derive closed-

form expressions for the parameters of the sampled process as a function of

the parameters of the given process. In section 3 we derive a lower bound on

the variances of unbiased estimates of the continuous-time parameters. In

section 4 we illustrate the existence of an optimal sampling rate, and examine

the dependence of the generalized variance on the sampling interval for some

-examples. In section 5 we discuss potential applications of the results of

this paper. The reader may want to skip sections 2 and 3 and go directly to

section 4 on the first reading.
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*,' 2. DISCRETIZATION OF THE CONTINUOUS-TIME SPECTRUM

Let x(t) be a continuous-time Gaussian stationary random process. The

process is assumed to have zero mean and a rational power spectral density

function

Ss s) (-S) (1)SxlS (s) -s) i

where

a(s) a sn + isn-1+ ... + 5n ; P(s) = lsn-1 + "' + On

Both polynomials are assumed to have all their roots in the left half plane.

Also, to simplify the analysis, we restrict ourselves to the case where all

the roots of a(s) are distinct. Note that the degree of p(s) is strictly

less than that of a(s) . This means that x(t) does not contain a white noise

component.

Assume that x(t) is sampled at multiples of the sampling interval T, to

yield a discrete-time Gaussian stationary process (yk , where

.I

Yk = x(kT) , k = ... -1,0,1,....

Our aim is to derive an expression for the power spectral density of {yk)

which we will denote by S y(z) . As we will see (yk} turns out to be an

autoregressive moving-average (ARMA) process of order (n, n-1).

The continuous-time spectrum, being a symmetric function of s, can be

decomposed as

(s) s)(2

where +(S) = "'"n+ Yn " The coefficients of y(s) can be obtained

from those of a(s) by equating coefficients in the identity

ylsla(-s) + y(-s)a(s) = O(s)O(-s) • (3)

4



Let us introduce the following notation

TTT
= [ a , 1 ,2 .., ] T  [ 0 1 ,{0 2 ,1 ... ,' O n ]  T = I [ I~ y 2 ... y n ] T

(-l)n'ji .j ; 1 4 2i-j 4 n

(A)iJ -(_ 1)n ; .2i-j - 0

0 otherwise

=(,)- 02$ 1 421-i 4 n
(0; 0otherwise

where A and B are n x n matrices. Then it can be verified that (3) is

equivalent to

Y A-1 B A(4)

. Next we express y(S)/z(s) as a partial fraction expansion. Let

az(s) = (s-X 1)(s-X2) ... (s-x1,)

Since the roots are assumed to be distinct, and since y(s)/a(s) is strictly

proper, we have

(s) n m

The coefficients (6 , 1 < m 4 n} can be evaluated by multiplying (5) by

(s-xm ) and then taking the limit as s X m This yields

Yn-1 + . + Yn

4 0n (6)
N - fl~m 11

* 4



We can now use the inverse Laplace transform to get the autocorrelation

function of x(t).

a x(=) I 6m e (7)
Mali

The covariance sequence of the discrete-time process {ykI is obtained by

sampling ax (T) at multiples of the interval T,

r y(I) AEykyk-t a: x(jr) * mae"" (8)

where

Tu

.IAm A , 1 m n.

'4 The power spectral density of (y is defined as the z-transform of the

2covariance sequence,

CO n

S (Z) r ±.mC 6 pI z).(

yy - 1-

M 1 - -- M-i (1-Pmz) ( -P z' )

As we see, S (z) is a rational function of z having a reciprocal symmetry.
y

By bringing the terms of the right-hand side of (9) under common denominator,
we get

S (z) = , (10)
a(z)a(z)

where

' a(z) a I az + ... a nz n- (1-41z)l(1-P2 z) ... ('l- nz)

e(z) enizn-1+ .. + eIz + eo + e z
1 + .. + en iz(n-1)

6



Note that e(z) possesses reciporcal symmetry. Also, from (9) it is clear
that e(z) is positive for all z = ej w, - w n . Hence e(z) can be

factored as

- e(z) = a2bfb(z1) (11)

where

n-1b(z) -1 + blZ . + bnIZ = (i-vlz)...(i-vnilz)

and all (v m , 1 4 m 4 n-1} have magnitudes strictly less than one. Finally,

the discrete-time power spectral density is given by

n-i -1

Sy(Z) eb(z)b(z) 2 m=Z1 ((vmz)(-vmZ12)
a(z)a(z ) n ( -1 mz -1

As we see, the discrete-time process {yk} can be modeled as an A4A process
of order (n,n-i),

n n-1
ay (+1uk+3k k-m r m k-m-. m=1 maI

where (uk} is the innovation process of {yk} and a2 is the variance of

(U k}

' 5 ,
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3. THE BOUND ON THE VARIANCE OF THE ESTIMATES

As we saw in the previous section, the spectral density of the sampled

process depends on the parameters (a2 , AMP Vm)' which in turn depend on the

parameters ({m,om} of the continuous-time process. Suppose we have N

consecutive measurements of the sampled process, say {yk' 1 4 k e N) . Since

(yk} is an ARMA process, the parameters (a2,a m, b m , or equivalently

(a2 ' N, vm} , can be estimated by any of several available techniques (such

as maximum likelihood, nonl inear least-squares, pseudo-linear regression).

The estimated values of {acm' 0m) can then be computed by reversing the

procedure described in the previous section. Our aim here is to examine the

best possible performance of such a procedure, i.e., to derive a lower bound

on the variances of the estimates {(m' Om) .

Let us denote by 9(1 ) the parameter vector

;W' L .... Ph •i ... v ' Vn-1' a2]T

The large-sample Fisher information matrix of 9W corresponding to N

measurements, is given by [3, p. 2421

(1 iNe(1) =

-1 *-1 * 1 * -1

. . I
N 0 . ( ... 0-I-1 1"1" * -I• ..... ft- *-i* I I

n-1 ( 1.V) (1-Vn1P) (1-Vn-11j) !-1V1v1I

-4 1L,; 0 .. . 0 0 . . .. 0 1(Za TJ

The Cramer-Rao lower bound on unbiased estimates of 9(1) is given by the

8



inverse of the information matrix,

CRB(9(1)) - [I~ N(OM 1 3}1 (15)

We are interested in deriving an expression for the Cramer-Rao bound for the

.*. parameter vector

e¢6) E 1""'n' 01 .... 2 n] '

This is related to the CRB for 9(1) via the formula [4, p. 1941

(6) (6) M O(6) H
CRB (e6  CRB(

[.= a J (IN ) -1 [- e ]H, (16)

where (.)H denotes Hermitian transpose. Rather than evaluating the Jacobian

directly, it will be convenient to introduce four intermediate

vectors, as follows:

e 2 ) [ i ', ' n' 611 6n] T

o(3) = £}I, "'" ' >n 81 "'" , 6n]
" £X1, .. 1 1 6n]

te(5) (a [I' I' (I I Y19 ... I Yn] T

Then we have
Se (6)  e(6) e(5) e(4) e(3) e(2)

be e be 8e be be

Next we derive explicit expressions for the various partial derivatives in

(17). Recall that

9
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n-i (-vmz)(1-vm z '1 n (1-2

Sy(z) 2 a .iI __I ___I'm ___ (18)ii (l-mzl(- )  W1 (1-Pmz)(l-m z'

ni-i

Multiplying both sides by (1-Iltkz) and substituting z = we get

n 12 mri k) (1-Vm
ik6 k " " n ,( 1 9 )

a[ n I- )] (1- 1
ml m~k

hence

lg2 n gl-NI
6og6k = loga2 + Z log(l'vm~k) + 1lg(l'v -1)

- log(-%I k ) - I log(l-Pm.l) •(2)
rn-i r*k

Differentiating (20) gives

6 k + k (21a)

1 86k n V n -2

+ ( ~ P~ 21b)m~k P'm' Pk MA 1 -P i

1 8k k

--1 (21c)

k vn. nlk 1-v, 0 1 k--
1 8

6
k 1 

(21d)

* 10



Equations (21a) - (21d) provide the quantities needed to evaluate

-ae(2)/ae( ) . Next recall that

an eYkT (22)

and

0I Pkk 
(23)

We can now evaluate ae(3)/ae(2) . Next note that

_]- Ii"' Yn
6k z (24)

rnok

and therefore

log 6k =0(1in + yn) - log(xt-xm) .(25)

Differentiating (25) yields

S1. 6k 1 k (26a)

n-2
1 66k (n-1)ylk "  + + Yn-1 1 (26b)
~- T

rk ;': YZk + "'" + Yn mk txk

1 k N (26c)

k " I Ylk + "" + Yn

Equations (26a) (26c) make it possible to evaluate ae(3)/ae (4 ) and thuse(4)/ (3 ) .

J- ' , _ ".. ;, ._ t{ t ,.x e., ,3 ..



C4 V W

Next we note that

ni ( =Sn xz + + . +(27)
m

Differentiating the equation above gives

- m[ri, (s-x)] = sn., (28)

and substituting s x x k yields

b - k (29)

ri (% m
m*k

This makes it possible to evaluate (4 and hence4

Finally, recall that

IL A18 * (30)

Differentiation yields

where

?58 1; 21-i (31d)
IAi0 ,otherwise

12
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From equations (31a)-(31d) we can evaluate 89(5)/be (6 ) , and thus
e(6)/ (5) .
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4. THE EXISTENCE OF AN OPTIMAL SAMPLING RATE

In this section we examine the behavior of the bound derived earlier, as

a function of the sampling interval T. First, we note the following: A

stationary process with a rational spectral density function has an infinite

bandwidth, and an ideal reconstruction from the samples is impossible.

However, there exists a samoling rate allowing a unique reconstruction of the

process parameters from the ARMA parameters of the sampled process. This

critical rate is determined by the requirement that all the discretized roots

(e T , 1 < m 4 n} have phase angles in the range - ,i.e.

T min {. ' } (32)1,-,,,n IIM(%,)I

where IM(.) denotes the imaginary part of the complex argument. If all the

S{x} are real, the sampling interval T can be made arbitrarily large.

Let us now examine the case of a first-order rational spectrum, i.e.

Sx(s) = (+ ,o.s , > 0 .(33)._~
x2

The corresponding discrete-time spectrum is

S y(Z) a (34)

where

• e-sT 2 • 0'(1-e "2aT )  (35)

In this case we get

0 (24)1 (36)



f-1

(6) Te" T 0 1
TIT 2 (1.2zT)(1.e -2T)/2a2 p(l.e. 2 aT)/z

A convenient scalar measure of the magnitude of the estimation error is the

so-called generalized variance, which is the determinant of the error

covariance matrix. This is bounded from below by the determinant of the CRB

(4, p. 195). We define

d(e(6~) j CRB(e (6 ))l (38)

For the first-order case we get, using (36),(37)

(6) a22 e2xT.
d(( - -" (39)

j Consider now the case in which the sampling interval T varies, while the total

number of samples N remains fixed. The continuous-time parameters

Sand p are also assumed to be fixed. For both T * 0 and T + - , the bound

on the generalized variance goes to infinity, as can be verified by using

L'Hospital's rule. Hence there exists a global minimum, which was evaluated
numerically to occur at T - 0. 8 a "1 . The behavior of d(9(6)) as a function

of T is shown in Figure 1, where ml and where de (6  ) was normalized by its
minimum value.

The sampling interval T - 0.8a "1 is optimal in the sense of minimizing

the best achievable generalized variance of the estimated continuous-time

parameters. We conclude that for first-order rational spectra, there exists

an optimal sampling rate for reconstructing the parameters of the continuous-

time process.

Higher-order cases appear to be too complicated to obtain closed-form

expressions. However, the formulas derived in Sections 2 and 3 can still be

used to evaluate the bound d(e ( 6 5) for any given values of (an, g} . Let

us consider two further examples. The first one is that of the second order

15i
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spectrum

Sx(S ) * (1+s)(l-s) (40)(1+s+s4 ) (1- s+s 4)

The bound, normalized with respect to its minimum value, is shown in Figure

2. Again we observe the existence of an optimal sampling interval, which is

about 0.9. The curve is relatively flat over the range 0.5 4 T c 1.5 , and

very steep outside this range.

For the next example we chose the fourth-order spectrum

S (S) " (l+s+s2+s3)(1's+s2's3) (41)(2+4s+Ss4+3s '+s4 )(2-4s+Ss Z-3s J+s4)

The normalized bound is shown in Figure 3. Here the optimal sampling rate is

approximately 0.5, with a flat range of about 0.25 < T < 0.75

Finally, we illustrate the effect of the damping coefficient of the
process on the behavior of generalized variance. We take the second-order

spectrum

(S) =, (1+s)(1-s) (42)
(1+2Cs + s4)(1-2cs+s)

where C is the damping coefficient. Figures 4 and 5 show the normalized

bound for C - 0.9 and C - 0.1 respectively. As we see, the flat region for

C - 0.1 is about twice as wide as the flat region for C -0.9 . In other
words, highly damped processes appear to be less sensitive to the choice of

sampling rate than slightly damped process.

16



5. DISCUSSION

We have derived closed form expressions for the Crmaer-Rao lower bound on

the covariance and the generalized variance of the estimated parameters of a

continuous-time rational spectrum from measurements of a uniformly sampled
realization of the given process. We explored the dependence of the CRB on

the sampling interval and demonstrated the existence of an optimal sampling
interval, in the sense of minimizing the CRB of the generalized variance for a

fixed number of measurements.

Since the optimal sampling interval depends on the process parameters, it
is reasonable to ask whether the above mentioned phenomenon can be used in

practice. A common practical situation is one in which a continuous-time
process with slowly time-varying spectrum is sampled, and where batches of

data are processed in succession, so as to track the time variation of the

k.' spectrum. An adaptive sampling-rate adjustment procedure can be incorporated

in such situations, as follows. Each time a batch is processed and the
process parameters are identified, the method described in this paper can be

used to compute the optimal sampling rate, which is then used as the sampling

rate for the next batch. If the time variation of the process parameters is

sufficiently slow, this will result in a nearly optimal sampling rate.

The same idea can be applied to an off-line processing of analog-recorded

continuous-time signals. Here the sampling rate adjustment would be iterative

rather than recursive, where at each iteration the same analog data is re-

sampled.

Slr
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